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Preface

This book, as the title suggests, is about first-order methods, namely, methods that
exploit information on values and gradients/subgradients (but not Hessians) of the
functions comprising the model under consideration. First-order methods go back
to 1847 with the work of Cauchy on the steepest descent method. With the increase
in the amount of applications that can be modeled as large- or even huge-scale op-
timization problems, there has been a revived interest in using simple methods that
require low iteration cost as well as low memory storage.

The primary goal of the book is to provide in a self-contained manner a com-
prehensive study of the main first-order methods that are frequently used in solving
large-scale problems. This is done by gathering and reorganizing in a unified man-
ner many results that are currently scattered throughout the literature. Special
emphasis is placed on rates of convergence and complexity analysis. Although the
name of the book is “first-order methods in optimization,” two disclaimers are in
order. First, we will actually also consider methods that exploit additional opera-
tions at each iteration such as prox evaluations, linear oracles, exact minimization
w.r.t. blocks of variables, and more, so perhaps a more suitable name would have
been “simple methods in optimization.” Second, in order to be truly self-contained,
the first part of the book (Chapters 1–7) is actually purely theoretical and con-
tains essential topics that are crucial for the developments in the algorithmic part
(Chapters 8–15).

The book is intended for students and researchers with a background in
advanced calculus and linear algebra, as well as prior knowledge in the funda-
mentals of optimization (some convex analysis, optimality conditions, and dual-
ity). A MATLAB toolbox implementing many of the algorithms described in the
book was developed by the author and Nili Guttmann-Beck and can be found at
www.siam.org/books/mo25.

The outline of the book is as follows. Chapter 1 reviews important facts
about vector spaces. Although the material is quite fundamental, it is advisable
not to skip this chapter since many of the conventions regarding the underlying
spaces used in the book are explained. Chapter 2 focuses on extended real-valued
functions with a special emphasis on properties such as convexity, closedness, and
continuity. Chapter 3 covers the topic of subgradients starting from basic defini-
tions, continuing with directional derivatives, differentiability, and subdifferentia-
bility and ending with calculus rules. Optimality conditions are derived for convex
problems (Fermat’s optimality condition), but also for the nonconvex composite
model, which will be discussed extensively throughout the book. Conjugate func-
tions are the subject of Chapter 4, which covers several issues, such as Fenchel’s

xi
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xii Preface

inequality, the biconjugate, calculus rules, conjugate subgradient theorem, relations
with the infimal convolution, and Fenchel’s duality theorem. Chapter 5 covers two
different but closely related subjects: smoothness and strong convexity—several
characterizations of each of these concepts are given, and their relation via the con-
jugate correspondence theorem is established. The proximal operator is discussed in
Chapter 6, which includes a large amount of prox computations as well as calculus
rules. The basic properties of the proximal mapping (first and second prox theo-
rems and Moreau decomposition) are proved, and the Moreau envelope concludes
the theoretical part of the chapter. The first part of the book ends with Chapter
7, which contains a study of symmetric spectral functions. The second, algorithmic
part of the book starts with Chapter 8 with primal and dual projected subgradient
methods. Several stepsize rules are discussed, and complexity results for both the
convex and the strongly convex cases are established. The chapter also includes dis-
cussions on the stochastic as well as the incremental projected subgradient methods.
The non-Euclidean version of the projected subgradient method, a.k.a. the mirror
descent method, is discussed in Chapter 9. Chapter 10 is concerned with the proxi-
mal gradient method as well as its many variants and extensions. The chapter also
studies several theoretical results concerning the so-called gradient mapping, which
plays an important part in the convergence analysis of proximal gradient–based
methods. The extension of the proximal gradient method to the block proximal
gradient method is discussed in Chapter 11, while Chapter 12 considers the dual
proximal gradient method and contains a result on a primal-dual relation that al-
lows one to transfer rate of convergence results from the dual problem to the primal
problem. The generalized conditional gradient method is the topic of Chapter 13,
which contains the basic rate of convergence results of the method, as well as its
block version, and discusses the effect of strong convexity assumptions on the model.
The alternating minimization method is the subject of Chapter 14, where its con-
vergence (as well as divergence) in many settings is established and illustrated. The
book concludes with a discussion on the ADMM method in Chapter 15.

My deepest thanks to Marc Teboulle, whose fundamental works in first-order
methods form the basis of many of the results in the book. Marc introduced me
to the world of optimization, and he is a constant source and inspiration and ad-
miration. I would like to thank Luba Tetruashvili for reading the book and for her
helpful remarks. It has been a pleasure to work with the extremely devoted and
efficient SIAM staff. Finally, I would like to acknowledge the support of the Israel
Science Foundation for supporting me while writing this book.
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Chapter 1

Vector Spaces

This chapter reviews several important facts about different aspects of vectors spaces
that will be used throughout the book. More comprehensive and detailed accounts
of these subjects can be found in advanced linear algebra books.

1.1 Definition

A vector space E over R (or a “real vector space”) is a set of elements called vectors
such that the following holds.

(A) For any two vectors x,y ∈ E, there corresponds a vector x+y, called the sum
of x and y, satisfying the following properties:

1. x+ y = y + x for any x,y ∈ E.

2. x+ (y + z) = (x+ y) + z for any x,y, z ∈ E.

3. There exists in E a unique vector 0 (called the zeros vector) such that
x+ 0 = x for any x.

4. For any x ∈ E, there exists a vector −x ∈ E such that x+ (−x) = 0.

(B) For any real number (also called scalar) α ∈ R and x ∈ E, there corresponds
a vector αx called the scalar multiplication of α and x satisfying the following
properties:

1. α(βx) = (αβ)x for any α, β ∈ R,x ∈ E.

2. 1x = x for any x ∈ E.

(C) The two operations (summation, scalar multiplication) satisfy the following
properties:

1. α(x + y) = αx + αy for any α ∈ R,x,y ∈ E.

2. (α+ β)x = αx+ βx for any α, β ∈ R,x ∈ E.
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2 Chapter 1. Vector Spaces

1.2 Dimension
A set of vectors {v1,v2, . . . ,vn} in a vector space E is called linearly independent
or just independent if the linear system

n∑
i=1

αivi = 0

implies that α1 = α2 = · · · = αn = 0. In other words, there does not exist a
nontrivial linear combination of vectors that is equal to the zeros vector. A set of
vectors {v1,v2, . . . ,vn} is said to span E if for any x ∈ E, there exist β1, β2, . . . , βn ∈
R such that

x =

n∑
i=1

βivi.

A basis of a vector space E is an independent set of vectors that spans E. It is
well known that the number of vectors in all the bases of a vector space E is the
same; this number is called the dimension of the space and is denoted by dim(E).
In this book we will discuss only vector spaces with a finite dimension, namely,
finite-dimensional vector spaces.

1.3 Norms
A norm ‖ · ‖ on a vector space E is a function ‖ · ‖ : E → R satisfying the following
properties:

1. (nonnegativity) ‖x‖ ≥ 0 for any x ∈ E and ‖x‖ = 0 if and only if x = 0.

2. (positive homogeneity) ‖λx‖ = |λ| · ‖x‖ for any x ∈ E and λ ∈ R.

3. (triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x,y ∈ E.

We will sometimes denote the norm of a space E by ‖ · ‖E to emphasize the identity
of the space and to distinguish it from other norms. The open ball with center c ∈ E

and radius r > 0 is denoted by B(c, r) and defined by

B(c, r) = {x ∈ E : ‖x− c‖ < r}.

The closed ball with center c ∈ E and radius r > 0 is denoted by B[c, r] and defined
by

B[c, r] = {x ∈ E : ‖x− c‖ ≤ r}.
We will sometimes use the notation B‖·‖[c, r] or B‖·‖(c, r) to identify the specific
norm that is being used.

1.4 Inner Products

An inner product of a real vector space E is a function that associates to each pair
of vectors x,y a real number, which is denoted by 〈x,y〉 and satisfies the following
properties:

1. (commutativity) 〈x,y〉 = 〈y,x〉 for any x,y ∈ E.
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1.5. Affine Sets and Convex Sets 3

2. (linearity) 〈α1x1 + α2x2,y〉 = α1〈x1,y〉+ α2〈x2,y〉 for any α1, α2 ∈ R and
x1,x2,y ∈ E.

3. (positive definiteness) 〈x,x〉 ≥ 0 for any x ∈ E and 〈x,x〉 = 0 if and only
if x = 0.

A vector space endowed with an inner product is also called an inner product space.
At this point we would like to make the following important note:

Underlying Spaces: In this book the underlying vector spaces, usually denoted
by V or E, are always finite dimensional real inner product spaces with endowed
inner product 〈·, ·〉 and endowed norm ‖ · ‖.

1.5 Affine Sets and Convex Sets
Given a real vector space E, a set S ⊆ E is called affine if for any x,y ∈ S and
λ ∈ R, the inclusion λx + (1 − λ)y ∈ S holds. For a set S ⊆ E, the affine hull
of S, denoted by aff(S), is the intersection of all affine sets containing S. Clearly,
aff(S) is by itself an affine set, and it is the smallest affine set containing S (w.r.t.
inclusion). A hyperplane is a subset of E given by

Ha,b = {x ∈ E : 〈a,x〉 = b},

where a ∈ E and b ∈ R. It is an easy exercise to show that hyperplanes are affine
sets.

A set C ⊆ E is called convex if for any x,y ∈ C and λ ∈ [0, 1] it holds that
λx+ (1− λ)y ∈ C. Evidently, affine sets are always convex. Open and closed balls
are always convex regardless of the choice of norm. For given x,y ∈ E, the closed
line segment between x and y is a subset of E denoted by [x,y] and defined as

[x,y] = {αx + (1− α)y : α ∈ [0, 1]} .

The open line segment (x,y) is similarly defined as

(x,y) = {αx+ (1− α)y : α ∈ (0, 1)}

when x 
= y and is the empty set ∅ when x = y. Closed and open line segments are
convex sets. Another example of convex sets are half-spaces, which are sets of the
form

H−a,b = {x ∈ E : 〈a,x〉 ≤ b},

where a ∈ E and b ∈ R.

1.6 Euclidean Spaces
A finite dimensional real vector space equipped with an inner product 〈·, ·〉 is called
a Euclidean space if it is endowed with the norm ‖x‖ =

√
〈x,x〉, which is referred

to as the Euclidean norm.
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4 Chapter 1. Vector Spaces

1.7 The Space R
n

The vector space Rn (n being a positive integer) is the set of n-dimensional column
vectors with real components endowed with the component-wise addition operator,⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2
...

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y1

y2
...

yn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1 + y1

x2 + y2
...

xn + yn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and the scalar-vector product,

λ

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2
...

xn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λx1

λx2
...

λxn

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where in the above x1, x2, . . . , xn, λ are real numbers. We will denote the standard
basis of Rn by e1, e2, . . . , en, where ei is the n-length column vector whose ith
component is one while all the others are zeros. The column vectors of all ones and
all zeros will be denoted by e and 0, respectively, where the length of the vectors
will be clear from the context.

By far the most used inner product in Rn is the dot product defined by

〈x,y〉 =
n∑
i=1

xiyi.

Inner Product in Rn: In this book, unless otherwise stated, the endowed inner
product in Rn is the dot product.

Of course, the dot product is not the only possible inner product that can be defined
over Rn. Another useful option is the Q-inner product, which is defined as

〈x,y〉Q = xTQy,

whereQ is a positive definite n×nmatrix. Obviously, the Q-inner product amounts
to the dot product when Q = I. If Rn is endowed with the dot product, then the
associated Euclidean norm is the l2-norm

‖x‖2 =
√

〈x,x〉 =

√√√√ n∑
i=1

x2i .

If Rn is endowed with the Q-inner product, then the associated Euclidean norm is
the Q-norm

‖x‖Q =
√
xTQx.
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1.7. The Space Rn 5

For a given p ≥ 1, the lp-norm on Rn is given by the formula

‖x‖p = p

√√√√ n∑
i=1

|xi|p.

The l∞-norm on R
n is defined by

‖x‖∞ = max
i=1,2,...,n

|xi|.

1.7.1 Subsets of Rn

The nonnegative orthant is the subset of Rn consisting of all vectors in Rn with
nonnegative components and is denoted by Rn+:

R
n
+ =

{
(x1, x2, . . . , xn)

T : x1, x2, . . . , xn ≥ 0
}
.

Similarly, the positive orthant consists of all the vectors in Rn with positive com-
ponents and is denoted by Rn++:

R
n
++ =

{
(x1, x2, . . . , xn)

T : x1, x2, . . . , xn > 0
}
.

The unit simplex , denoted by Δn, is the subset of Rn comprising all nonnegative
vectors whose components sum up to one:

Δn =
{
x ∈ R

n : x ≥ 0, eTx = 1
}
.

Given two vectors �,u ∈ Rn that satisfy � ≤ u, the box with lower bounds � and
upper bounds u is denoted by Box[�,u] and defined as

Box[�,u] = {x ∈ R
n : � ≤ x ≤ u}.

Thus, for example, Box[−e, e] = [−1, 1]n.

1.7.2 Operations on Vectors in Rn

There are several operations on vectors in Rn that will be frequently used in the
book. For a given vector x ∈ Rn, the vector [x]+ is the nonnegative part of x
defined by [x]+ = (max{xi, 0})ni=1. For a given x ∈ Rn, the vector |x| is the vector
of component-wise absolute values (|xi|)ni=1, and the vector sgn(x) is defined as

sgn(x)i =

⎧⎪⎨⎪⎩ 1, xi ≥ 0,

−1, xi < 0.

For two vectors a,b ∈ Rn, their Hadamard product, denoted by a�b, is the vector
comprising the component-wise products: a� b = (aibi)

n
i=1.
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6 Chapter 1. Vector Spaces

1.8 The Space R
m×n

The set of all real-valuedm×n matrices is denoted by Rm×n. This is a vector space
with the component-wise addition as the summation operation and the component-
wise scalar multiplication as the “scalar-vector multiplication” operation. The dot
product in Rm×n is defined by

〈A,B〉 = Tr(ATB) =

m∑
i=1

n∑
j=1

AijBij , A,B ∈ R
m×n.

The space Rm×n is sometimes associated with the space Rmn in the sense that
each matrix in Rm×n corresponds to the mn-length vector constructed by stacking
the columns of the matrix. Unless otherwise stated, we will assume that the inner
product in Rm×n is the dot product.

Inner Product in Rm×n: In this book, unless otherwise stated, the endowed
inner product in Rm×n is the dot product.

1.8.1 Subsets of Rn×n

The set of all n× n symmetric matrices is denoted by Sn:

S
n =

{
A ∈ R

n×n : A = AT
}
.

Note that Sn is also a vector space with the same summation and scalar multipli-
cation operations as in Rn×n. The inner product in Sn, unless otherwise stated, is
the dot product.
The set of all n× n positive semidefinite matrices is denoted by Sn+:

S
n
+ =

{
A ∈ R

n×n : A  0
}
.

The set of all n× n positive definite matrices is denoted by Sn++:

S
n
++ =

{
A ∈ R

n×n : A � 0
}
.

Obviously, the inclusion Sn++ ⊆ Sn+ ⊆ Sn holds. Similarly, Sn− is the set of all n× n
negative semidefinite matrices, and Sn−− is the set of all n × n negative definite
matrices:

S
n
− =

{
A ∈ R

n×n : A � 0
}
,

S
n
−− =

{
A ∈ R

n×n : A ≺ 0
}
.

The set of all n× n orthogonal matrices is denoted by On:

O
n =

{
A ∈ R

n×n : AAT = ATA = I
}
.

1.8.2 Norms in R
m×n

If Rm×n is endowed with the dot product, then the corresponding Euclidean norm
is the Frobenius norm defined by

‖A‖F =
√
Tr(ATA) =

√√√√ m∑
i=1

n∑
j=1

A2
ij , A ∈ R

m×n.
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1.9. Cartesian Product of Vector Spaces 7

Many examples of matrix norms are generated by using the concept of induced
norms, which we now describe. Given a matrix A ∈ Rm×n and two norms ‖ · ‖a
and ‖ · ‖b on Rn and Rm, respectively, the induced matrix norm ‖A‖a,b is defined
by

‖A‖a,b = max
x

{‖Ax‖b : ‖x‖a ≤ 1}.

It can be easily shown that the above definition implies that for any x ∈ Rn, the
inequality

‖Ax‖b ≤ ‖A‖a,b‖x‖a
holds. We refer to the matrix norm ‖ · ‖a,b as the (a, b)-norm. When a = b, we will
simply refer to it as an a-norm and omit one of the subscripts in its notation, that
is, use the notation ‖ · ‖a instead of ‖ · ‖a,a.

Example 1.1 (spectral norm). If ‖ · ‖a = ‖ · ‖b = ‖ · ‖2, then the induced norm
of a matrix A ∈ Rm×n is the maximum singular value of A:

‖A‖2 = ‖A‖2,2 =
√
λmax(ATA) ≡ σmax(A).

Example 1.2 (1-norm). When ‖ · ‖a = ‖ · ‖b = ‖ · ‖1, the induced matrix norm
of a matrix A ∈ Rm×n is given by

‖A‖1 = max
j=1,2,...,n

m∑
i=1

|Ai,j |.

This norm is also called the maximum absolute column sum norm.

Example 1.3 (∞-norm). When ‖ · ‖a = ‖ · ‖b = ‖ · ‖∞, the induced matrix norm
of a matrix A ∈ Rm×n is given by

‖A‖∞ = max
i=1,2,...,m

n∑
j=1

|Ai,j |.

This norm is also called the maximum absolute row sum norm.

1.9 Cartesian Product of Vector Spaces
Given m vector spaces E1,E2, . . . ,Em equipped with inner products 〈·, ·〉Ei , their
Cartesian product E1 × E2 × · · · × Em is the vector space of all m-tuples (v1,v2,
. . . ,vm) equipped with the component-wise addition between vectors:

(v1,v2, . . . ,vm) + (w1,w2, . . . ,wm) = (v1 +w1,v2 +w2, . . . ,vm +wm)

and the scalar-vector multiplication operation given by

α(v1,v2, . . . ,vm) = (αv1, αv2, . . . , αvm).

The inner product in the Cartesian product space is defined as

〈(v1,v2, . . . ,vm), (w1,w2, . . . ,wm)〉E1×E2×···×Em =

m∑
i=1

〈vi,wi〉Ei . (1.1)
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8 Chapter 1. Vector Spaces

The space R×R, for example, consists of all two-dimensional row vectors, so in that
respect it is different than R2, which comprises all two-dimensional column vectors.
However, with only a slight abuse of notation, we will occasionally refer to R × R

as R2.
Suppose that E1,E2, . . . ,Em are vector spaces with endowed norms ‖ · ‖E1 , ‖ ·

‖E2 , . . . , ‖·‖Em , respectively. There are many ways to define a norm on the Cartesian
product space E1 × E2 × · · · × Em. For example, for any p ≥ 1, we can define the
composite lp-norm as

‖(u1,u2, . . . ,um)‖ = p

√√√√ m∑
i=1

‖ui‖pEi
.

Another norm is a composite weighted l2-norm:

‖(u1,u2, . . . ,um)‖ =

√√√√ m∑
i=1

ωi‖ui‖2Ei
,

where ω1, ω2, . . . , ωm are given positive real numbers.
We will use the convention that if E1,E2, . . . ,Em are Euclidean spaces, then

E1 × E2 × · · · × Em is also a Euclidean space, and consequently, by the definition
(1.1) of the inner product in product spaces,

‖(u1,u2, . . . ,um)‖E1×E2×···×Em =

√√√√ m∑
i=1

‖ui‖2Ei
.

1.10 Linear Transformations
Given two vector spaces E and V, a function A : E → V is called a linear transfor-
mation if the following property holds for any x,y ∈ E and α, β ∈ R:

A(αx + βy) = αA(x) + βA(y).

All linear transformations from Rn to Rm have the form

A(x) = Ax

for some matrix A ∈ Rm×n. All linear transformations from Rm×n to Rk have the
form

A(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Tr(AT
1 X)

Tr(AT
2 X)

...

Tr(AT
kX)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
for some A1,A2, . . . ,Ak ∈ Rm×n. The identity transformation, denoted by I, is
defined by the relation I(x) = x for all x ∈ E.
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1.11. The Dual Space 9

1.11 The Dual Space
A linear functional on a vector space E is a linear transformation from E to R.
Given a vector space E, the set of all linear functionals on E is called the dual space
and is denoted by E

∗. For inner product spaces, it is known that given a linear
functional f ∈ E∗, there always exists v ∈ E such that

f(x) = 〈v,x〉. (1.2)

For the sake of simplicity of notation, we will represent the linear functional f
given in (1.2) by the vector v. This correspondence between linear functionals and
elements in E leads us to consider the elements in E∗ as exactly the same as those
in E. The inner product in E

∗ is the same as the inner product in E. Essentially,
the only difference between E and E∗ will be in the choice of norms of each of the
spaces. Suppose that E is endowed with a norm ‖ · ‖. Then the norm of the dual
space, called the dual norm, is given by

‖y‖∗ ≡ max
x

{〈y,x〉 : ‖x‖ ≤ 1}, y ∈ E
∗. (1.3)

It is not difficult to show that the dual norm is indeed a norm. A useful property is
that the maximum in (1.3) can be taken over the unit sphere rather than over the
unit ball, meaning that the following formula is valid:

‖y‖∗ = max
x

{〈y,x〉 : ‖x‖ = 1}, y ∈ E
∗.

The definition of the dual norm readily implies the following generalized version of
the Cauchy–Schwarz inequality.

Lemma 1.4 (generalized Cauchy–Schwarz inequality). Let E be an inner
product vector space endowed with a norm ‖ · ‖. Then

|〈y,x〉| ≤ ‖y‖∗‖x‖ for any y ∈ E
∗,x ∈ E. (1.4)

Proof. If x = 0, the inequality is trivially satisfied. Otherwise, take x̃ = x
‖x‖ .

Obviously, ‖x̃‖ = 1, and hence, by the definition of the dual norm, we have

‖y‖∗ ≥ 〈y, x̃〉 = 1

‖x‖〈y,x〉,

showing that 〈y,x〉 ≤ ‖y‖∗‖x‖. Plugging −x instead of x in the latter inequal-
ity, we obtain that 〈y,x〉 ≥ −‖y‖∗‖x‖, thus showing the validity of inequality
(1.4).

Another important result is that Euclidean norms are self-dual, meaning that
‖ · ‖ = ‖ · ‖∗. Here of course we use our convention that the elements in the dual
space E∗ are the same as the elements in E. We can thus write, in only a slight
abuse of notation,1 that for any Euclidean space E, E = E∗.

1Disregarding the fact that the members of E∗ are actually linear functionals on E.
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10 Chapter 1. Vector Spaces

Example 1.5 (lp-norms). Consider the space Rn endowed with the lp-norm.
When p > 1, the dual norm is the lq-norm, where q > 1 is the number satisfying
1
p + 1

q = 1. When p = 1, the dual norm is the l∞-norm, and vice versa—the dual

norm of the l∞-norm is the l1-norm.

Example 1.6 (Q-norms). Consider the space Rn endowed with the Q-norm,
where Q ∈ Sn++. The dual norm of ‖ · ‖Q is ‖ · ‖Q−1 , meaning

‖x‖Q−1 =
√
xTQ−1x.

As an example, consider the case where Q is diagonal: Q = diag(w1, w2, . . . , wn)
with w1, w2, . . . , wn > 0. The Q-norm in this case takes the form

‖x‖ =

√√√√ n∑
i=1

wix2i ,

and its dual norm is

‖x‖∗ =

√√√√ n∑
i=1

1

wi
x2i .

Example 1.7 (dual norm of Cartesian products of spaces). Consider the
space E = E1×E1×· · ·×Em, where E1,E2, . . . ,Em are inner product vectors spaces
with norms ‖ · ‖E1 , ‖ · ‖E2 , . . . , ‖ · ‖Em , respectively. Recall that we assume that the
inner product in the product space is given by

〈(v1,v2, . . . ,vm), (w1,w2, . . . ,wm)〉 =
m∑
i=1

〈vi,wi〉.

The dual space to E1 ×E2 × · · · ×Em is the product space E∗1 ×E∗2 × · · · ×E∗m with
endowed norm defined as usual in dual spaces. For example, suppose that the norm
on the product space is the composite weighted l2-norm:

‖(u1,u2, . . . ,um)‖ =

√√√√ m∑
i=1

ωi‖ui‖2Ei
, ui ∈ Ei, i = 1, 2, . . . , p,

where ω1, ω2, . . . , ωm > 0 are given positive weights. Then it is simple to show that
the dual norm in this case is given by

‖(v1,v2, . . . ,vm)‖∗ =

√√√√ m∑
i=1

1

ωi
‖vi‖2E∗

i
, vi ∈ E

∗
i , i = 1, 2, . . . , p.

where ‖ ·‖E∗
i
is the dual norm to ‖ ·‖Ei, namely, the norm of the dual space E∗i .

1.12 The Bidual Space
Given a vector space E, the dual space E∗ is also a vector space, and we can also
consider its dual space, namely, E∗∗. This is the so-called bidual space. In the
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1.13. Adjoint Transformations 11

setting of finite dimensional spaces, the bidual space is the same as the original
space (under our convention that the elements in the dual space are the same as
the elements in the original space), and the corresponding norm (bidual norm) is
the same as the original norm.

1.13 Adjoint Transformations
Given two inner product vector spaces E,V and a linear transformation A from V

to E, the adjoint transformation, denoted by AT , is a transformation from E∗ to
V∗ defined by the relation

〈y,A(x)〉 = 〈AT (y),x〉

for any x ∈ V,y ∈ E∗. When V = Rn,E = Rm (endowed with the dot product),
and A(x) = Ax for some matrix A ∈ R

m×n, then the adjoint transformation is
given by AT (x) = ATx.

Example 1.8 (adjoint of a transformation from Rm×n to Rk). Consider now
a linear transformation from the space Rm×n to Rk. As was already mentioned in
Section 1.10, such a transformation has the form

A(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Tr(AT
1 X)

Tr(AT
2 X)

...

Tr(AT
kX)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where Ai ∈ Rm×n are given matrices. The adjoint transformation AT will be a
transformation from Rk to Rm×n. To find it, let us write the defining relation of
the adjoint operator:

〈y,A(X)〉 = 〈AT (y),X〉 for all X ∈ R
m×n,y ∈ R

k,

which is the same as (recall that unless otherwise stated, the inner products in
Rm×n and Rk are the dot products)

k∑
i=1

yiTr(A
T
i X) = 〈AT (y),X〉 for all X ∈ R

m×n,y ∈ R
k,

that is,

Tr

⎛⎝[ k∑
i=1

yiAi

]T
X

⎞⎠ = 〈AT (y),X〉 for all X ∈ R
m×n,y ∈ R

k.

Obviously, the above relation implies that the adjoint transformation is given by

AT (y) =

k∑
i=1

yiAi.
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12 Chapter 1. Vector Spaces

The adjoint of the adjoint transformation is the original transformation: (AT )T

= A. It also holds that whenever A is an invertible transformation,

(AT )−1 = (A−1)T .

1.14 Norms of Linear Transformations
Let A : E → V be a linear transformation from a vector space E to a vector space
V. Assume that E and V are endowed with the norms ‖ · ‖E and ‖ · ‖V, respectively.
The norm of the linear transformation is defined by

‖A‖ ≡ max{‖A(x)‖V : ‖x‖E ≤ 1}.

It is not difficult to show that ‖A‖ = ‖AT ‖. There is a close connection between
the notion of induced norms discussed in Section 1.8.2 and norms of linear trans-
formations. Specifically, suppose that A is a linear transformation from Rn to Rm

given by
A(x) = Ax, (1.5)

where A ∈ Rm×n, and assume that Rn and Rm are endowed with the norms ‖ · ‖a
and ‖ · ‖b, respectively. Then ‖A‖ = ‖A‖a,b, meaning that the induced norm of a
matrix is actually the norm of the corresponding linear transformation given by the
relation (1.5).
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Chapter 2

Extended Real-Valued
Functions

Underlying Space: Recall that in this book, the underlying spaces (denoted
usually by E or V) are finite-dimensional inner product vector spaces with inner
product 〈·, ·〉 and norm ‖ · ‖.

2.1 Extended Real-Valued Functions and Closedness
An extended real-valued function is a function defined over the entire underlying
space that can take any real value, as well as the infinite values −∞ and ∞. Since
infinite values are allowed, we also define the appropriate arithmetic operations with
−∞ and ∞ as follows:

a+∞ = ∞+ a = ∞ (−∞ < a <∞),

a− ∞ = −∞+ a = −∞ (−∞ < a <∞),

a · ∞ = ∞ · a = ∞ (0 < a < ∞),

a · (−∞) = (−∞) · a = −∞ (0 < a < ∞),

a · ∞ = ∞ · a = −∞ (−∞ < a < 0),

a · (−∞) = (−∞) · a = ∞ (−∞ < a < 0),

0 · ∞ = ∞ · 0 = 0 · (−∞) = (−∞) · 0 = 0.

In a sense, the only “unnatural” rule is the last one, since the expression “0 · ∞”
is considered to be undefined in some branches of mathematics, but in the context
of extended real-valued functions, defining it as zero is the “correct” choice in the
sense of consistency. We will also use the following natural order between finite and
infinite numbers:

∞ > a (−∞ ≤ a < ∞),

−∞ < a (−∞ < a ≤ ∞).

13
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14 Chapter 2. Extended Real-Valued Functions

For an extended real-valued function f : E → [−∞,∞], the effective domain
or just the domain is the set

dom(f) = {x ∈ E : f(x) < ∞}.

The notation “f : E → [−∞,∞]” means that f is (potentially) extended real-valued
(even if not explicitly stated). The notation “f : E → (−∞,∞]” means that f is
extended real-valued and does not attain the value −∞.

The simplest examples of extended real-valued functions are indicators.

Example 2.1 (indicator functions). For any subset C ⊆ E, the indicator func-
tion of C is defined to be the extended real-valued function given by

δC(x) =

⎧⎪⎨⎪⎩ 0, x ∈ C,

∞, x /∈ C.

We obviously have

dom(δC) = C.

The epigraph of an extended real-valued function f : E → [−∞,∞] is defined by

epi(f) = {(x, y) : f(x) ≤ y,x ∈ E, y ∈ R}.

The epigraph is a subset of E × R. Note that if (x, y) ∈ epi(f), then obviously
x ∈ dom(f). A function f : E → [−∞,∞] is called proper if it does not attain the
value −∞ and there exists at least one x ∈ E such that f(x) < ∞, meaning that
dom(f) is nonempty. The notion of closedness will play an important role in much
of the analysis in this book.

Definition 2.2 (closed functions). A function f : E → [−∞,∞] is closed if its
epigraph is closed.

The indicator function δC is closed if and only if its underlying set C is closed.

Proposition 2.3 (closedness of indicators of closed sets). The indicator
function δC is closed if and only if C is a closed set.

Proof. The epigraph of δC is given by

epi(δC) = {(x, y) ∈ E× R : δC(x) ≤ y} = C × R+,

which is evidently closed if and only if C is closed.

We thus obtained in particular that the domain of a closed indicator function
is necessarily a closed set. However, in general, we note that the domain of a closed
function might not be closed. A classical example for this observation is given
below.
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2.1. Extended Real-Valued Functions and Closedness 15

Example 2.4. Consider the function f : R → [−∞,∞] given by

f(x) =

⎧⎪⎨⎪⎩
1
x , x > 0,

∞, else.

The domain of the function, which is the open interval (0,∞), is obviously not
closed, but the function is closed since its epigraph

epi(f) = {(x, y) : xy ≥ 1, x > 0}

is a closed set; see Figure 2.1.

Figure 2.1. The epigraph of the function f(x) = 1
x for x > 0 and ∞ otherwise.

A property that will be later shown to be equivalent to closedness is lower
semicontinuity.

Definition 2.5 (lower semicontinuity). A function f : E → [−∞,∞] is called
lower semicontinuous at x ∈ E if

f(x) ≤ lim inf
n→∞

f(xn)

for any sequence {xn}n≥1 ⊆ E for which xn → x as n → ∞. A function f : E →
[−∞,∞] is called lower semicontinuous if it is lower semicontinuous at each
point in E.

For any α ∈ R, the α-level set of a function f : E → [−∞,∞] is the set

Lev(f, α) = {x ∈ E : f(x) ≤ α}.

The following theorem shows that closedness and lower semicontinuity are equiva-
lent properties, and they are both equivalent to the property that all the level sets
of the function are closed.
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16 Chapter 2. Extended Real-Valued Functions

Theorem 2.6 (equivalence of closedness, lower semicontinuity, and closed-
ness of level sets). Let f : E → [−∞,∞]. Then the following three claims are
equivalent:

(i) f is lower semicontinuous.

(ii) f is closed.

(iii) For any α ∈ R, the level set

Lev(f, α) = {x ∈ E : f(x) ≤ α}

is closed.

Proof. (i ⇒ ii) Suppose that f is lower semicontinuous. We will show that epi(f)
is closed. For that, take {(xn, yn)}n≥1 ⊆ epi(f) such that (xn, yn) → (x∗, y∗) as
n → ∞. Then for any n ≥ 1,

f(xn) ≤ yn.

Therefore, by the lower semicontinuity of f at x∗, we have

f(x∗) ≤ lim inf
n→∞

f(xn) ≤ lim inf
n→∞

yn = y∗,

showing that (x∗, y∗) ∈ epi(f) and hence that f is closed.
(ii ⇒ iii) Suppose that f is closed, namely, that epi(f) is closed. Let α ∈ R.

We will show that Lev(f, α) is closed. If Lev(f, α) = ∅, we are done. Otherwise, take
a sequence {xn}n≥1 ⊆ Lev(f, α) that converges to x̄. Obviously (xn, α) ∈ epi(f)
for any n and (xn, α) → (x̄, α) as n → ∞. By the closedness of epi(f), it follows
that (x̄, α) ∈ epi(f), establishing the fact that x̄ ∈ Lev(f, α).

(iii ⇒ i) Suppose that all the level sets of f are closed. We will show that it is
lower semicontinuous. Assume by contradiction that f is not lower semicontinuous,
meaning that there exists x∗ ∈ E and {xn}n≥1 ⊆ E such that xn → x∗ and
lim infn→∞ f(xn) < f(x∗). Take α that satisfies

lim inf
n→∞

f(xn) < α < f(x∗). (2.1)

Then there exists a subsequence {xnk
}k≥1 such that f(xnk

) ≤ α for all k ≥ 1. By
the closedness of the level set Lev(f, α) and the fact that xnk

→ x∗ as k → ∞, it
follows that f(x∗) ≤ α, which is a contradiction to (2.1), showing that (iii) implies
(i).

The next result shows that closedness of functions is preserved under affine
change of variables, summation, multiplication by a nonnegative number, and max-
imization. Before stating the theorem, we note that in this book we will not use
the inf/sup notation but rather use only the min/max notation, where the us-
age of this notation does not imply that the maximum or minimum is actually
attained.
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2.1. Extended Real-Valued Functions and Closedness 17

Theorem 2.7 (operations preserving closedness).

(a) Let A : E → V be a linear transformation from E to V and b ∈ V and
let f : V → [−∞,∞] be an extended real-valued closed function. Then the
function g : E → [−∞,∞] given by

g(x) = f(A(x) + b)

is closed.

(b) Let f1, f2, . . . , fm : E → (−∞,∞] be extended real-valued closed functions and
let α1, α2, . . . , αm ∈ R+. Then the function f =

∑m
i=1 αifi is closed.

(c) Let fi : E → (−∞,∞], i ∈ I be extended real-valued closed functions, where I
is a given index set. Then the function

f(x) = max
i∈I

fi(x)

is closed.

Proof. (a) To show that g is closed, take a sequence {(xn, yn)}n≥1 ⊆ epi(g) such
that (xn, yn) → (x∗, y∗) as n → ∞, where x∗ ∈ E and y∗ ∈ R. The relation
{(xn, yn)}n≥1 ⊆ epi(g) can be written equivalently as

f(A(xn) + b) ≤ yn for all n ≥ 1.

Therefore, (A(xn) + b, yn) ∈ epi(f). Hence, since f is closed and A(xn) + b →
A(x∗) + b, yn → y∗ as n → ∞ (by the continuity of linear transformations), it
follows that (A(x∗) + b, y∗) ∈ epi(f), meaning that

f(A(x∗) + b) ≤ y∗,

which is the same as the relation (x∗, y∗) ∈ epi(g). We have shown that epi(g) is
closed or, equivalently, that g is closed.

(b) We will prove that f is lower semicontinuous, which by Theorem 2.6 is
equivalent to the closedness of f . Let {xn}n≥1 be a sequence converging to x∗.
Then by the lower semicontinuity of fi, for any i = 1, 2, . . . ,m,

fi(x
∗) ≤ lim inf

n→∞
fi(xn).

Multiplying the above inequality by αi and summing for i = 1, 2, . . . ,m gives(
m∑
i=1

αifi

)
(x∗) ≤

m∑
i=1

lim inf
n→∞

αifi(xn) ≤ lim inf
n→∞

(
m∑
i=1

αifi

)
(xn),

where in the last inequality we used the fact that for any two sequences of real
numbers {an}n≥1 and {bn}n≥1, it holds that

lim inf
n→∞

an + lim inf
n→∞

bn ≤ lim inf
n→∞

(an + bn).
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18 Chapter 2. Extended Real-Valued Functions

A simple induction argument shows that this property holds for an arbitrary num-
ber of sequences. We have thus established the lower semicontinuity and hence
closedness of

∑m
i=1 αifi.

(c) Since fi is closed for any i ∈ I, it follows that epi(fi) is closed for any i,
and hence epi(f) =

⋂
i∈I epi(fi) is closed as an intersection of closed sets, implying

that f is closed.

2.2 Closedness versus Continuity
A relation between continuity and closedness is described in the following theorem
stating that if an extended real-valued function is continuous over its domain,2

which is assumed to be closed, then it is closed.

Theorem 2.8. Let f : E → (−∞,∞] be an extended real-valued function that is
continuous over its domain and suppose that dom(f) is closed. Then f is closed.

Proof. To show that epi(f) is closed (which is the same as saying that f is closed),
take a sequence {(xn, yn)}n≥1 ⊆ epi(f) for which (xn, yn) → (x∗, y∗) as n → ∞
for some x∗ ∈ E and y ∈ R. Since {xn}n≥1 ⊆ dom(f), xn → x∗ and dom(f) is
closed, it follows that x∗ ∈ dom(f). By the definition of the epigraph, we have for
all n ≥ 1,

f(xn) ≤ yn. (2.2)

Since f is continuous over dom(f), and in particular at x∗, it follows by taking n
to ∞ in (2.2) that

f(x∗) ≤ y∗,

showing that (x∗, y∗) ∈ epi(f), thus establishing the closedness of epi(f).

In particular, any real-valued continuous function over E is closed.

Corollary 2.9. Let f : E → R be continuous. Then f is closed.

The above results demonstrate that there is a connection between continuity
and closedness. However, these two notions are different, as the following example
illustrates.

Example 2.10. Consider the function fα : R → (−∞,∞] given by

fα(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
α, x = 0,

x, 0 < x ≤ 1,

∞, else.

2A function g : E → (−∞,∞] is continuous over its domain if for any sequence {xn}n≥1 ⊆
dom(g) satisfying xn → x∗ as n → ∞ for some x∗ ∈ dom(g), it holds that g(xn) → g(x∗) as
n→ ∞.
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2.2. Closedness versus Continuity 19

5 0 0.5 1 1.5
5

0

0.5

1

1.5

Figure 2.2. An example of a closed function, which is not continuous over
its domain.

This function is closed if and only if α ≤ 0, and it is continuous over its domain if
and only if α = 0. Thus, the function f−0.1, plotted in Figure 2.2, is closed but not
continuous over its domain.

Example 2.11 (l0-norm). Consider the l0-norm function f : Rn → R given by

f(x) = ‖x‖0 ≡ #{i : xi 
= 0}.

That is, ‖x‖0 is the number of nonzero elements in x. Note the l0-norm is actually
not a norm. It does not satisfy the homogeneity property. Nevertheless, this termi-
nology is widely used in the literature, and we will therefore adopt it. Although f
is obviously not continuous, it is closed. To show this, note that

f(x) =

n∑
i=1

I(xi),

where I : R → {0, 1} is given by

I(y) =

⎧⎪⎨⎪⎩ 0, y = 0,

1, y 
= 0.

The function I is closed since its level sets, which are given by

Lev(I, α) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅, α < 0,

{0}, α ∈ [0, 1),

R, α ≥ 1,

are closed sets. Therefore, f , as a sum of closed functions, is closed (Theorem
2.7(b)).
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20 Chapter 2. Extended Real-Valued Functions

It is well known that a continuous function over a nonempty compact3 set
attains a minimum. This is the well-known Weierstrass theorem. We will now show
that this property also holds for closed functions.

Theorem 2.12 (Weierstrass theorem for closed functions). Let f : E →
(−∞,∞] be a proper closed function and assume that C is a compact set satisfying
C ∩ dom(f) 
= ∅. Then

(a) f is bounded below over C.

(b) f attains its minimal value over C.

Proof. (a) Suppose by contradiction that f is not bounded below over C. Then
there exists a sequence {xn}n≥1 ⊆ C such that

lim
n→∞

f(xn) = −∞. (2.3)

By the Bolzano–Weierstrass theorem, since C is compact, there exists a subse-
quence {xnk

}k≥1 that converges to a point x̄ ∈ C. By Theorem 2.6, f is lower
semicontinuous, and hence

f(x̄) ≤ lim inf
k→∞

f(xnk
),

which is a contradiction to (2.3).
(b) Denote by fopt the minimal value of f over C. Then there exists a sequence

{xn}n≥1 for which f(xn) → fopt as n → ∞. As before, take a subsequence {xnk
}k≥1

that converges to some point x̄ ∈ C. By the lower semicontinuity of f , it follows
that

f(x̄) ≤ lim
k→∞

f(xnk
) = fopt,

showing that x̄ is a minimizer of f over C.

When the set C in the premise of Theorem 2.12 is not compact, the Weierstrass
theorem does not guarantee the attainment of a minimizer, but attainment of a
minimizer can be shown when the compactness of C is replaced by closedness if the
function has a property called coerciveness.

Definition 2.13 (coerciveness). A proper function f : E → (−∞,∞] is called
coercive if

lim
‖x‖→∞

f(x) = ∞.

An important property of closed coercive functions is that they possess a
minimizer on any closed set that has a nonempty intersection with the domain of
the function.

Theorem 2.14 (attainment under coerciveness). Let f : E → (−∞,∞] be a
proper closed and coercive function and let S ⊆ E be a nonempty closed set satisfying
S ∩ dom(f) 
= ∅. Then f attains its minimal value over S.

3A set is called compact if it is closed and bounded.
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2.3. Convex Functions 21

Proof. Let x0 be an arbitrary point in S ∩dom(f). By the coerciveness of f , there
exists an M > 0 such that

f(x) > f(x0) for any x satisfying ‖x‖ > M. (2.4)

Since any minimizer x∗ of f over S satisfies f(x∗) ≤ f(x0), it follows from (2.4)
that the set of minimizers of f over S is the same as the set of minimizers of f over
S ∩B‖·‖[0,M ], which is compact (both sets are closed, and B‖·‖[0,M ] is bounded)
and nonempty (as it contains x0). Therefore, by the Weierstrass theorem for closed
functions (Theorem 2.12), there exists a minimizer of f over S ∩B[0,M ] and hence
also over S.

2.3 Convex Functions

2.3.1 Definition and Basic Properties

Like closedness, the definition of convexity for extended real-valued functions can
be written in terms of the epigraph.

Definition 2.15 (convex functions). An extended real-valued function f : E →
[−∞,∞] is called convex if epi(f) is a convex set.

It is not difficult to show that a proper extended real-valued function f : E →
(−∞,∞] is convex if and only if dom(f) is convex and the restriction of f to dom(f)
is convex over dom(f) in the sense of convexity of real-valued functions over convex
domains. Using this observation, we conclude that a proper extended real-valued
function f is convex if and only if

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all x,y ∈ E, λ ∈ [0, 1], (2.5)

or, equivalently, if and only if dom(f) is convex and (2.5) is satisfied for any x,y ∈
dom(f) and λ ∈ [0, 1]. Inequality (2.5) is a special case of Jensen’s inequality,
stating that for any x1,x2, . . . ,xk ∈ E and λ ∈ Δk, the following inequality holds:

f

(
k∑
i=1

λixi

)
≤

k∑
i=1

λif(xi).

There are several operations that preserve convexity of extended real-valued
convex functions. Some of them are summarized in Theorem 2.16 below. The proof
can be easily deduced by combining two facts: (i) the same properties are known to
hold for real-valued convex functions defined on a given convex domain, and (ii) the
observation that a proper extended real-valued function is convex if and only if its
domain is convex and its restriction to its domain is a real-valued convex function.

Theorem 2.16 (operations preserving convexity).

(a) Let A : E → V be a linear transformation from E to V (two underlying vector
spaces) and b ∈ V, and let f : V → (−∞,∞] be an extended real-valued
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22 Chapter 2. Extended Real-Valued Functions

convex function. Then the extended real-valued function g : E → (−∞,∞]
given by

g(x) = f(A(x) + b)

is convex.

(b) Let f1, f2, . . . , fm : E → (−∞,∞] be extended real-valued convex functions,
and let α1, α2, . . . , αm ∈ R+. Then the function

∑m
i=1 αifi is convex.

(c) Let fi : E → (−∞,∞], i ∈ I, be extended real-valued convex functions, where
I is a given index set. Then the function

f(x) = max
i∈I

fi(x)

is convex.

Given a nonempty set C ⊆ E, the distance function to C is defined by

dC(x) = min
y∈C

‖x− y‖.

The next example shows that for Euclidean spaces, the function 1
2

(
‖x‖2 − d2C(x)

)
is always convex, regardless of whether C is convex or not.

Example 2.17.4 Suppose that the underlying space E is Euclidean (meaning that
‖ · ‖ =

√
〈·, ·〉). Let C ⊆ E be a nonempty set, and consider the function

ϕC(x) =
1

2

(
‖x‖2 − d2C(x)

)
.

To show that ϕC is convex, note that

d2C(x) = min
y∈C

‖x− y‖2 = ‖x‖2 −max
y∈C

[2〈y,x〉 − ‖y‖2].

Hence,

ϕC(x) = max
y∈C

[
〈y,x〉 − 1

2
‖y‖2

]
. (2.6)

Therefore, since ϕC is a maximization of affine—and hence convex—functions, by
Theorem 2.16(c), it is necessarily convex.

Another operation that preserves convexity is partial minimization of jointly
convex functions.

Theorem 2.18 (convexity under partial minimization). Let f : E × V →
(−∞,∞] be a convex function satisfying the following property:

for any x ∈ E there exists y ∈ V for which f(x,y) < ∞. (2.7)

4Example 2.17 is from Hiriart-Urruty and Lemaréchal [67, Example 2.1.4].
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2.3. Convex Functions 23

Let5 g : E → [−∞,∞) be defined by

g(x) ≡ min
y∈E

f(x,y).

Then g is convex.

Proof. Let x1,x2 ∈ E and λ ∈ [0, 1]. To show the convexity of g, we will prove
that

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2). (2.8)

The inequality is obvious if λ = 0 or 1. We will therefore assume that λ ∈ (0, 1).
The proof is split into two cases.

Case I: Here we assume that g(x1), g(x2) > −∞. Take ε > 0. Then there exist
y1,y2 ∈ V such that

f(x1,y1) ≤ g(x1) + ε, (2.9)

f(x2,y2) ≤ g(x2) + ε. (2.10)

By the convexity of f , we have

f(λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≤ λf(x1,y1) + (1− λ)f(x2,y2)

(2.9),(2.10)

≤ λ(g(x1) + ε) + (1− λ)(g(x2) + ε)

= λg(x1) + (1− λ)g(x2) + ε.

Therefore, by the definition of g, we can conclude that

g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2) + ε.

Since the above inequality holds for any ε > 0, it follows that (2.8) holds.

Case II: Assume that at least one of the values g(x1), g(x2) is equal −∞. We will
assume without loss of generality that g(x1) = −∞. In this case, (2.8) is equivalent
to saying that g(λx1+(1−λ)x2) = −∞. Take anyM ∈ R. Then since g(x1) = −∞,
it follows that there exists y1 ∈ V for which

f(x1,y1) ≤M.

By property (2.7), there exists y2 ∈ V for which f(x2,y2) < ∞. Using the convexity
of f , we obtain that

f(λx1 + (1− λ)x2, λy1 + (1− λ)y2) ≤ λf(x1,y1) + (1− λ)f(x2,y2)

≤ λM + (1 − λ)f(x2,y2),

which by the definition of g implies the inequality

g(λx1 + (1 − λ)x2) ≤ λM + (1− λ)f(x2,y2).

Since the latter inequality holds for any M ∈ R and since f(x2,y2) < ∞, it follows
that g(λx1 + (1 − λ)x2) = −∞, proving the result for the second case.

5The fact that g does not attain the value ∞ is a direct consequence of property (2.7).
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24 Chapter 2. Extended Real-Valued Functions

2.3.2 The Infimal Convolution

Let h1, h2 : E → (−∞,∞] be two proper functions. The infimal convolution of
h1, h2 is defined by the following formula:

(h1�h2)(x) ≡ min
u∈E

{h1(u) + h2(x− u)}.

A direct consequence of Theorem 2.18 is the following result stating that the infimal
convolution of a proper convex function and a real-valued convex function is always
convex.

Theorem 2.19 (convexity of the infimal convolution). Let h1 : E → (−∞,∞]
be a proper convex function and let h2 : E → R be a real-valued convex function.
Then h1�h2 is convex.

Proof. Define f(x,y) ≡ h1(y) + h2(x − y). The convexity of h1 and h2 implies
that f is convex. In addition, property (2.7) holds since for any x ∈ E, we can
pick any y ∈ dom(h1) and obtain that f(x,y) = h1(y) + h2(x − y) < ∞. Thus,
by Theorem 2.18, the function h1�h2, as a partial minimization function of f(·, ·)
w.r.t. the second argument is a convex function.

Example 2.20 (convexity of the distance function). Let C ⊆ E be a nonempty
convex set. The distance function can be written as the following infimal convolu-
tion:

dC(x) = min
y

{‖x− y‖ : y ∈ C} = min
y∈E

{δC(y) + ‖x− y‖} = (δC�h1)(x),

where h1(·) = ‖ · ‖. Since δC is proper and convex and h1 is real-valued convex, it
follows by Theorem 2.19 that dC is convex.

2.3.3 Continuity of Convex Functions

It is well known that convex functions are continuous at points in the interior of
their domain. This is explicitly recalled in the next result, which actually states a
stronger property of convex functions—local Lipschitz continuity.

Theorem 2.21 (local Lipschitz continuity of convex functions [10, Theo-
rem 7.36]). Let f : E → (−∞,∞] be convex. Let x0 ∈ int(dom(f))). Then there
exist ε > 0 and L > 0 such that B[x0, ε] ⊆ C and

|f(x)− f(x0)| ≤ L‖x− x0‖ (2.11)

for all x ∈ B[x0, ε].

Convex functions are not necessarily continuous at boundary points. Conti-
nuity is not guaranteed even when the function at hand is closed and convex (cf.
Example 2.32). However, for univariate functions we will now show that closed and
convex functions are continuous.
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2.3. Convex Functions 25

Theorem 2.22 (continuity of closed convex univariate functions). Let
f : R → (−∞,∞] be a proper closed and convex function. Then f is continuous
over dom(f).

Proof. Since f is convex, its domain is some interval I = dom(f). If int(I) = ∅,
then I is a singleton, and consequently the continuity of f over I is obvious. Assume
then that int(I) 
= ∅. The fact that f is continuous over int(I) follows from Theorem
2.21. We only need to show the continuity of f at the endpoints of I (if it exists).
For that, we can assume without loss of generality that the interval I has a left
endpoint a, and we will prove the right continuity of f at a. We begin by showing
that limt→a+ f(t) exists. Let c > a be an arbitrary scalar in I and define the
function

g(t) ≡ f(c− t)− f(c)

t
.

Obviously, g is defined on (0, c−a]. We will show that g is nondecreasing and upper
bounded over (0, c− a]. For that, take 0 < t ≤ s ≤ c− a. Then

c− t =

(
1− t

s

)
c+

t

s
(c− s),

and hence, by the convexity of f ,

f(c− t) ≤
(
1− t

s

)
f(c) +

t

s
f(c− s),

which after some rearrangement of terms can be seen to be equivalent to

f(c− t)− f(c)

t
≤ f(c− s)− f(c)

s
.

Thus,
g(t) ≤ g(s) for any 0 < t ≤ s ≤ c− a. (2.12)

Namely, g is nondecreasing over (0, c − a]. To show the upper boundedness, just
plug s = c− a into (2.12) and obtain that

g(t) ≤ g(c− a) for any t ∈ (0, c− a]. (2.13)

We can thus conclude that limt→(c−a)− g(t) exists and is equal to some real number

. Hence,

f(c− t) = f(c) + tg(t) → f(c) + (c− a)
,

as t → (c−a)−, and consequently limt→a+ f(t) exists and is equal to f(c)+(c−a)
.
Using (2.13), we obtain that for any t ∈ (0, c− a],

f(c− t) = f(c) + tg(t) ≤ f(c) + (c− a)g(c− a) = f(c) + (c− a)
f(a)− f(c)

c− a
= f(a),

implying the inequality limt→a+ f(t) ≤ f(a). On the other hand, since f is closed,
it is also lower semicontinuous (Theorem 2.6), and thus limt→a+ f(t) ≥ f(a). Con-
sequently, limt→a+ f(t) = f(a), proving the right continuity of f at a.
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26 Chapter 2. Extended Real-Valued Functions

2.4 Support Functions
Let C ⊆ E be a nonempty set. Then the support function of C is the function
σC : E∗ → (−∞,∞] given by

σC(y) = max
x∈C

〈y,x〉.

For a fixed x, the linear function y �→ 〈y,x〉 is obviously closed and convex. There-
fore, by Theorems 2.7(c) and 2.16(c), the support function, as a maximum of closed
and convex functions, is always closed and convex, regardless of whether C is closed
and/or convex. We summarize this property in the next lemma.

Lemma 2.23 (closedness and convexity of support functions). Let C ⊆ E

be a nonempty set. Then σC is a closed and convex function.

In most of our discussions on support functions in this chapter, the fact that
σC operates on the dual space E∗ instead of E will have no importance—recall that
we use the convention that the elements of E∗ and E are the same. However, when
norms will be involved, naturally, the dual norm will have to be used (cf. Example
2.31).

Additional properties of support functions that follow directly by definition
are given in Lemma 2.24 below. Note that for two sets A,B that reside in the same
space, the sum A+B stands for the Minkowski sum given by

A+ B = {a+ b : a ∈ A,b ∈ B}.

Also, for a scalar α ∈ R and a set A ⊆ E, the set αA is

αA = {αa : a ∈ A}.

Lemma 2.24.

(a) (positive homogeneity) For any nonempty set C ⊆ E,y ∈ E∗ and α ≥ 0,

σC(αy) = ασC(y).

(b) (subadditivity) For any nonempty set C ⊆ E and y1,y2 ∈ E∗,

σC(y1 + y2) ≤ σC(y1) + σC(y2).

(c) For any nonempty set C ⊆ E,y ∈ E∗ and α ≥ 0,

σαC(y) = ασC(y).

(d) For any two nonempty sets A,B ⊆ E and y ∈ E∗,

σA+B(y) = σA(y) + σB(y).
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2.4. Support Functions 27

Proof. (a) σC(αy) = maxx∈C〈αy,x〉 = αmaxx∈C〈y,x〉 = ασC(y).
(b)

σC(y1 + y2) = max
x∈C

〈y1 + y2,x〉 = max
x∈C

[〈y1,x〉+ 〈y2,x〉]

≤ max
x∈C

〈y1,x〉+max
x∈C

〈y2,x〉 = σC(y1) + σC(y2).

(c)

σαC(y) = max
x∈αC

〈y,x〉 = max
x1∈C

〈y, αx1〉 = α max
x1∈C

〈y,x1〉 = ασC(y).

(d)

σA+B(y) = max
x∈A+B

〈y,x〉 = max
x1∈A,x2∈B

〈y,x1 + x2〉

= max
x1∈A,x2∈B

[〈y,x1〉+ 〈y,x2〉] = max
x1∈A

〈y,x1〉+ max
x2∈B

〈y,x2〉

= σA(y) + σB(y).

Following are some basic examples of support functions.

Example 2.25 (support functions of finite sets). Suppose that

C = {b1,b2, . . . ,bm},

where b1,b2, . . . ,bm ∈ E. Then

σC(y) = max{〈b1,y〉, 〈b2,y〉, . . . , 〈bm,y〉}.

Recall that S ⊆ E is called a cone if it satisfies the following property: for any
x ∈ S and λ ≥ 0, the inclusion λx ∈ S holds.

Example 2.26 (support functions of cones). Let K ⊆ E be a cone. Define the
polar cone of K as

K◦ = {y ∈ E
∗ : 〈y,x〉 ≤ 0 for all x ∈ K}.

We will show that

σK(y) = δK◦(y). (2.14)

Indeed, if y ∈ K◦, then 〈y,x〉 ≤ 0 for all x ∈ K and for x = 0, 〈y,x〉 = 0.
Therefore,

σK(y) = max
x∈K

〈y,x〉 = 0.

If y /∈ K◦, then there exists x̃ ∈ K such that 〈y, x̃〉 > 0. Since λx̃ ∈ K for all
λ ≥ 0, it follows that

σK(y) ≥ 〈y, λx̃〉 = λ〈y, x̃〉 for all λ ≥ 0.

Taking λ → ∞, we obtain that σK(y) = ∞ for y /∈ K◦, and hence formula (2.14)
is proven.
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28 Chapter 2. Extended Real-Valued Functions

Example 2.27 (support function of the nonnegative orthant). Consider
the space E = Rn. As a special case of Example 2.26, since (Rn+)

◦ = Rn−, it follows
that

σRn
+
(y) = δRn

−(y).

The next example uses Farkas’s lemma,6 which we now recall.

Lemma 2.28 (Farkas’s lemma—second formulation). Let c ∈ Rn and A ∈
Rm×n. Then the following two claims are equivalent:

A. The implication Ax ≤ 0 ⇒ cTx ≤ 0 holds true.

B. There exists y ∈ Rm+ such that ATy = c.

Example 2.29 (support functions of convex polyhedral cones). Let the
underlying space be E = Rn and let A ∈ Rm×n. Define the set

S = {x ∈ R
n : Ax ≤ 0}.

Since S is a cone, we can use Example 2.26 to conclude that

σS(y) = δS◦(y).

Note that y ∈ S◦ if and only if

〈y,x〉 ≤ 0 for any x satisfying Ax ≤ 0. (2.15)

By Farkas’s lemma (Lemma 2.28), (2.15) is equivalent to the statement

there exists λ ∈ R
m
+ such that ATλ = y.

Hence,

S◦ =
{
ATλ : λ ∈ R

m
+

}
.

To conclude,

σS(y) = δ{ATλ:λ∈Rm
+ }(y).

Example 2.30 (support functions of affine sets). Let the underlying space be
E = Rn and let B ∈ Rm×n,b ∈ Rm. Define the affine set

C = {x ∈ R
n : Bx = b}.

6The lemma and its proof can be found, for example, in [10, Lemma 10.3].
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2.4. Support Functions 29

We assume that C is nonempty, namely, that there exists x0 ∈ Rn for which Bx0 =
b. The support function is obviously given by

σC(y) = max
x

{〈y,x〉 : Bx = b} .

Making the change of variables x = z+x0, we obtain that the support function can
be rewritten as

σC(y) = max
z

{〈y, z〉 + 〈y,x0〉 : Bz = 0}

= 〈y,x0〉+max
z

{〈y, z〉 : Bz = 0}

= 〈y,x0〉+ σC̃(y), (2.16)

where C̃ = {x ∈ Rn : Bx = 0} . The set C̃ is a convex polyhedral cone that can be
written as

C̃ = {x ∈ R
n : Ax ≤ 0} ,

where A =
(

B

−B

)
. By Example 2.29, it follows that

σC̃ = δC̃◦ , (2.17)

where C̃◦ is the polar cone of C̃, which is given by

C̃◦ =
{
BTλ1 −BTλ2 : λ1,λ2 ∈ R

m
+

}
.

We will show that
C̃◦ = Range(BT ). (2.18)

Indeed, if v ∈ C̃◦, then there exists λ1,λ2 ∈ Rm+ for which v = BTλ1 − BTλ2 =
BT (λ1 − λ2) ∈ Range(BT ). In the other direction, if v ∈ Range(BT ), then there
exists λ ∈ R

m for which v = BTλ. Defining λ1 = [λ]+,λ2 = [−λ]+, we obtain
that λ = λ1 − λ2 with λ1,λ2 ∈ Rm+ , and hence

v = BTλ = BT (λ1 − λ2) = BTλ1 −BTλ2 ∈ C̃◦.

Combining (2.16), (2.17), and (2.18), we finally conclude that

σC(y) = 〈y,x0〉+ δRange(BT )(y).

Example 2.31 (support functions of unit balls). Suppose that E is the un-
derlying space endowed with a norm ‖ · ‖. Consider the unit ball given by

B‖·‖[0, 1] = {x ∈ E : ‖x‖ ≤ 1}.

By the definition of the dual norm, we have for any y ∈ E∗
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30 Chapter 2. Extended Real-Valued Functions

σB‖·‖[0,1](y) = max
‖x‖≤1

〈y,x〉 = ‖y‖∗.

Thus, for example, for the space Rn we have

σB‖·‖p [0,1](y) = ‖y‖q
(
1 ≤ p ≤ ∞,

1

p
+

1

q
= 1

)
,

σB‖·‖Q [0,1](y) = ‖y‖Q−1 (Q ∈ S
n
++).

In the first formula we use the convention that p = 1/∞ corresponds to q = ∞/1.

The next example is also an example of a closed and convex function that is not
continuous (recall that such an example does not exist for one-dimensional functions;
see Theorem 2.22).

Example 2.32.7 Consider the following set in R2:

C =

{
(x1, x2)

T : x1 +
x22
2

≤ 0

}
.

Then the support function of C is given by

σC(y) = max
x1,x2

{
y1x1 + y2x2 : x1 +

x22
2

≤ 0

}
. (2.19)

Obviously, σC(0) = 0. We will compute the support function at y 
= 0. In this case,
it is easy to see that the maximum of problem (2.19) is attained at the boundary
of C.8 Therefore,

σC(y) = max
x1,x2

{
y1x1 + y2x2 : x1 +

x22
2

= 0

}
= max

x2

{
−y1

2
x22 + y2x2

}
.

If y1 < 0, then the maximal value is∞. If y1 = 0 and y2 
= 0, then the maximal value
is also ∞. If y1 > 0, the maximum is attained at x2 = y2

y1
, and the corresponding

maximal value is
y22
2y1

. Thus, the support function is given by

σC(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y22
2y1

, y1 > 0,

0, y1 = y2 = 0,

∞ else.

7Example 2.32 is from Rockafellar [108, p. 83].
8This fact can be shown by contradiction. If the maximum was attained at an interior point

of C, then the gradient of the objective function, meaning y, would be the zeros vector, which is
a contradiction to the assumption that y �= 0.
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2.4. Support Functions 31

By Lemma 2.23, σC is closed and convex. However, it is not continuous at

(y1, y2) = (0, 0). Indeed, taking for any α > 0 the path y1(t) =
t2

2α , y2(t) = t(t > 0),
we obtain that

σC(y1(t), y2(t)) = α,

and hence the limit of σC(y1(t), y2(t)) as t → 0+ is α, which combined with the fact
that σC(0, 0) = 0 implies the discontinuity of f at (0, 0). The contour lines of σC
are plotted in Figure 2.3.

y
1

y 2

0 1 2 3 4 5

0

1

2

3

4

5

Figure 2.3. Contour lines of the closed, convex, and noncontinuous func-
tion from Example 2.32.

An important property of support functions is that they are completely determined
by their underlying sets as long as these sets are closed and convex. The proof of
this result requires the strict separation theorem,9 which is now recalled.

Theorem 2.33 (strict separation theorem). Let C ⊆ E be a nonempty closed
and convex set, and let y /∈ C. Then there exist p ∈ E∗\{0} and α ∈ R such that

〈p,y〉 > α

and

〈p,x〉 ≤ α for all x ∈ C.

Lemma 2.34. Let A,B ⊆ E be nonempty closed and convex sets. Then A = B if
and only if σA = σB .

Proof. If A = B, then obviously σA = σB . Suppose now that σA = σB . We will
prove that A = B. Assume by contradiction that this is not the case, and without
loss of generality suppose that there exists y ∈ A such that y /∈ B. Since y /∈ B and
B is nonempty closed and convex, by the strict separation theorem, there exists a

9The theorem and its proof can be found, for example, in [10, Theorem 10.1].
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32 Chapter 2. Extended Real-Valued Functions

hyperplane separating y from B, meaning that there exists p ∈ E∗\{0} and α > 0
such that

〈p,x〉 ≤ α < 〈p,y〉 for any x ∈ B.

Taking the maximum over x ∈ B, we conclude that σB(p) ≤ α < 〈p,y〉 ≤ σA(y),
a contradiction to the assertion that the support functions are the same.

A related result states that the support function stays the same under the
operations of closure and convex hull of the underlying set.

Lemma 2.35. Let A ⊆ E be nonempty. Then

(a) σA = σcl(A);

(b) σA = σconv(A).

Proof. (a) Since A ⊆ cl(A),

σA(y) ≤ σcl(A)(y) for any y ∈ E
∗. (2.20)

We will show the reverse inequality. Let y ∈ E∗. Then by the definition of the
support function, there exists a sequence {xk}k≥1 ⊆ cl(A) such that

〈y,xk〉 → σcl(A)(y) as k → ∞. (2.21)

By the definition of the closure, it follows that there exists a sequence {zk}k≥1 ⊆ A
such that ‖zk − xk‖ ≤ 1

k for all k, and hence

zk − xk → 0 as k → ∞. (2.22)

Now, since zk ∈ A,

σA(y) ≥ 〈y, zk〉 = 〈y,xk〉+ 〈y, zk − xk〉.

Taking k → ∞ and using (2.21), (2.22), we obtain that

σA(y) ≥ σcl(A)(y) + 0 = σcl(A)(y),

which combined with (2.20) yields the desired result σA = σcl(A).
(b) Since A ⊆ conv(A), we have that σA(y) ≤ σconv(A)(y) for any y ∈ E∗. We

will show the reverse inequality. Let y ∈ E∗. Then by the definition of the support
function, there exists a sequence {xk}k≥1 ⊆ conv(A) such that

〈y,xk〉 → σconv(A)(y) as k → ∞. (2.23)

By the definition of the convex hull, it follows that for any k, there exist vectors
zk1 , z

k
2 , . . . , z

k
nk

∈ A (nk is a positive integer) and λk ∈ Δnk
such that

xk =

nk∑
i=1

λki z
k
i .
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2.4. Support Functions 33

Now,

〈y,xk〉 =
〈
y,

nk∑
i=1

λki z
k
i

〉
=

nk∑
i=1

λki 〈y, zki 〉 ≤
nk∑
i=1

λki σA(y) = σA(y),

where the inequality follows by the fact that zki ∈ A. Taking the limit as k → ∞
and using (2.23), we obtain that σconv(A)(y) ≤ σA(y).

Example 2.36 (support of the unit simplex). Suppose that the underlying
space is Rn and consider the unit simplex set Δn = {x ∈ Rn : eTx = 1,x ≥ 0}.
Since the unit simplex can be written as the convex hull of the standard basis of
Rn,

Δn = conv{e1, e2, . . . , en},

it follows by Lemma 2.35(b) that

σΔn(y) = σ{e1,...,en}(y) = max{〈e1,y〉, 〈e2,y〉, . . . , 〈en,y〉}.

Since we always assume (unless otherwise stated) that Rn is endowed with the dot
product, the support function is

σΔn(y) = max{y1, y2, . . . , yn}.

The table below summarizes the main support function computations that
were considered in this section.

C σC(y) Assumptions Reference

{b1,b2, . . . ,bn} maxi=1,2,...,n〈bi,y〉 bi ∈ E Example 2.25

K δK◦ (y) K—cone Example 2.26

R
n
+ δRn

− (y) E = R
n Example 2.27

Δn max{y1, y2, . . . , yn} E = R
n Example 2.36

{x ∈ R
n : Ax ≤ 0} δ{AT λ:λ∈Rm

+ }(y) E = R
n, A ∈

R
m×n

Example 2.29

{x ∈ R
n : Bx = b} 〈y,x0〉+ δRange(BT )(y) E = R

n, B ∈
R

m×n, b ∈
R

m, Bx0 = b

Example 2.30

B‖·‖[0, 1] ‖y‖∗ - Example 2.31
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Chapter 3

Subgradients

3.1 Definitions and First Examples

Definition 3.1 (subgradient). Let f : E → (−∞,∞] be a proper function and
let x ∈ dom(f). A vector g ∈ E∗ is called a subgradient of f at x if

f(y) ≥ f(x) + 〈g,y − x〉 for all y ∈ E. (3.1)

Recall (see Section 1.11) that we use in this book the convention that the
elements of E∗ are exactly the elements of E, whereas the asterisk just marks the
fact that the endowed norm on E∗ is the dual norm ‖ · ‖∗ rather than the endowed
norm ‖ · ‖ on E.

The inequality (3.1) is also called the subgradient inequality. It actually says
that each subgradient is associated with an underestimate affine function, which is
tangent to the surface of the function at x. Since the subgradient inequality (3.1)
is trivial for y /∈ dom(f), it is frequently restricted to points in dom(f) and is thus
written as

f(y) ≥ f(x) + 〈g,y − x〉 for all y ∈ dom(f).

Given a point x ∈ dom(f), there might be more than one subgradient of f at
x, and the set of all subgradients is called the subdifferential.

Definition 3.2 (subdifferential). The set of all subgradients of f at x is called
the subdifferential of f at x and is denoted by ∂f(x):

∂f(x) ≡ {g ∈ E
∗ : f(y) ≥ f(x) + 〈g,y − x〉 for all y ∈ E}.

When x /∈ dom(f), we define ∂f(x) = ∅. Actually, for proper functions, this is
a direct consequence of the definition of the subdifferential set since the subgradient
inequality (3.1) does not hold for x /∈ domf and y ∈ domf .

Example 3.3 (subdifferential of norms at 0). Let f : E → R be given by
f(x) = ‖x‖, where ‖ · ‖ is the endowed norm on E. We will show that the subdiffer-
ential of f at x = 0 is the dual norm unit ball:

35
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36 Chapter 3. Subgradients

∂f(0) = B‖·‖∗ [0, 1] = {g ∈ E
∗ : ‖g‖∗ ≤ 1}. (3.2)

To show (3.2), note that g ∈ ∂f(0) if and only if

f(y) ≥ f(0) + 〈g,y − 0〉 for all y ∈ E,

which is the same as
‖y‖ ≥ 〈g,y〉 for all y ∈ E. (3.3)

We will prove that the latter holds true if and only if ‖g‖∗ ≤ 1. Indeed, if ‖g‖∗ ≤ 1,
then by the generalized Cauchy–Schwarz inequality (Lemma 1.4),

〈g,y〉 ≤ ‖g‖∗‖y‖ ≤ ‖y‖ for any y ∈ E,

implying (3.3). In the reverse direction, assume that (3.3) holds. Taking the maxi-
mum of both sides of (3.3) over all y satisfying ‖y‖ ≤ 1, we get

‖g‖∗ = max
y:‖y‖≤1

〈g,y〉 ≤ max
y:‖y‖≤1

‖y‖ = 1.

We have thus established the equivalence between (3.3) and the inequality ‖g‖∗ ≤ 1,
which is the same as the result (3.2).

Example 3.4 (subdifferential of the l1-norm at 0). Let f : Rn → R be given
by f(x) = ‖x‖1. Then, since this is a special case of Example 3.3 with ‖ · ‖ = ‖ · ‖1,
and since the l∞-norm is the dual of the l1-norm, it follows that

∂f(0) = B‖·‖∞ [0, 1] = [−1, 1]n.

In particular, when n = 1, then f(x) = |x|, and we have

∂f(0) = [−1, 1].

The linear underestimators that correspond to −0.8, −0.3, and 0.7 ∈ ∂f(0), mean-
ing −0.8x, −0.3x, and 0.7x, are described in Figure 3.1.

For the next example, we need the definition of the normal cone. Given a set S ⊆ E

and a point x ∈ S, the normal cone of S at x is defined as

NS(x) = {y ∈ E
∗ : 〈y, z− x〉 ≤ 0 for any z ∈ S}.

The normal cone, in addition to being a cone, is closed and convex as an intersection
of half-spaces. When x /∈ S, we define NS(x) = ∅.

Example 3.5 (subdifferential of indicator functions). Suppose that S ⊆ E

is nonempty and consider the indicator function δS . Then for any x ∈ S, we have
that y ∈ ∂δS(x) if and only if

δS(z) ≥ δS(x) + 〈y, z − x〉 for all z ∈ S,

which is the same as
〈y, z − x〉 ≤ 0 for all z ∈ S.

Therefore, we have that
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3.1. Definitions and First Examples 37

0 1 2

5

5

0

0.5

1

1.5

2

Figure 3.1. The linear underestimators of |x| corresponding to −0.8, −0.3,
0.7 ∈ ∂f(0); see Example 3.4.

∂δS(x) = NS(x) for all x ∈ S. (3.4)

For x /∈ S, ∂δS(x) = NS(x) = ∅ by convention, so we obtain that (3.4) holds also
for x /∈ S.

Example 3.6 (subdifferential of the indicator function of the unit ball).
As a special case of Example 3.5, let

S = B[0, 1] = {x ∈ E : ‖x‖ ≤ 1}.

Then ∂δS(x) = NS(x), where NS(x) is given by

NS(x) = {y ∈ E
∗ : 〈y, z − x〉 ≤ 0 for all z ∈ S} .

We will find a more explicit representation for NS(x). If x /∈ S, then NS(x) = ∅.
Suppose that ‖x‖ ≤ 1. A vector y ∈ E∗ satisfies y ∈ NS(x) if and only if

〈y, z − x〉 ≤ 0 for any z satisfying ‖z‖ ≤ 1,

which is the same as the inequality,

max
z:‖z‖≤1

〈y, z〉 ≤ 〈y,x〉.

Using the definition of the dual norm, we obtain that the latter can be rewritten as

‖y‖∗ ≤ 〈y,x〉.

Therefore,
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38 Chapter 3. Subgradients

∂δB[0,1](x) = NB[0,1](x) =

⎧⎪⎨⎪⎩ {y ∈ E∗ : ‖y‖∗ ≤ 〈y,x〉} , ‖x‖ ≤ 1,

∅, ‖x‖ > 1.

Example 3.7 (subgradient of the dual function). Consider the minimization
problem

min{f(x) : g(x) ≤ 0,x ∈ X}, (3.5)

where ∅ 
= X ⊆ E, f : E → R and g : E → R
m is a vector-valued function. The

Lagrangian dual objective function is given by

q(λ) = min
x∈X

{
L(x;λ) ≡ f(x) + λTg(x)

}
.

The dual problem consists of maximizing q on its effective domain, which is given
by

dom(−q) = {λ ∈ R
m
+ : q(λ) > −∞}.

No matter whether the primal problem (3.5) is convex or not, the dual problem

max
λ∈Rm

{q(λ) : λ ∈ dom(−q)}

is always convex, meaning that q is a concave function and dom(−q) is a convex
set. Let λ0 ∈ dom(−q) and assume that the minimum in the minimization problem
defining q(λ0),

q(λ0) = min
x∈X

{
f(x) + λT0 g(x)

}
,

is attained at x0 ∈ X , that is,

L(x0;λ0) = f(x0) + λT0 g(x0) = q(λ0).

We seek to find a subgradient of the convex function −q at λ0. For that, note that
for any λ ∈ dom(−q),

q(λ) = min
x∈X

{
f(x) + λTg(x)

}
≤ f(x0) + λTg(x0)

= f(x0) + λT0 g(x0) + (λ − λ0)
Tg(x0)

= q(λ0) + g(x0)
T (λ− λ0).

Thus,
−q(λ) ≥ −q(λ0) + (−g(x0))

T (λ− λ0) for any λ ∈ dom(−q),
concluding that

−g(x0) ∈ ∂(−q)(λ0).
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3.2. Properties of the Subdifferential Set 39

Example 3.8 (subgradient of the maximum eigenvalue function). Consider
the function f : Sn → R given by f(X) = λmax(X) (recall that Sn is the set of all
n × n symmetric matrices). Let X ∈ Sn and let v be a normalized eigenvector of
X (‖v‖2 = 1) associated with the maximum eigenvalue of X. We will establish the
relation

vvT ∈ ∂f(X). (3.6)

To show this, note that for any Y ∈ Sn,

λmax(Y) = max
u

{uTYu : ‖u‖2 = 1}

≥ vTYv

= vTXv + vT (Y −X)v

= λmax(X)‖v‖22 +Tr(vT (Y −X)v)

= λmax(X) + Tr(vvT (Y −X))

= λmax(X) + 〈vvT ,Y −X〉,

establishing (3.6).

There is an intrinsic difference between the results in Examples 3.7 and 3.8 and
the results in Examples 3.3, 3.4, 3.5, and 3.6. Only one subgradient is computed in
Examples 3.7 and 3.8; such results are referred to as weak results . On the other hand,
in Examples 3.3, 3.4, 3.5, and 3.6 the entire subdifferential set is characterized—such
results are called strong results.

3.2 Properties of the Subdifferential Set

Note that the subdifferential sets computed in the previous section are all closed
and convex. This is not a coincidence. Subdifferential sets are always closed and
convex.

Theorem 3.9 (closedness and convexity of the subdifferential set). Let
f : E → (−∞,∞] be a proper function. Then the set ∂f(x) is closed and convex for
any x ∈ E.

Proof. For any x ∈ E, the subdifferential set can be represented as

∂f(x) =
⋂
y∈E

Hy,

where Hy = {g ∈ E
∗ : f(y) ≥ f(x) + 〈g,y − x〉} . Since the sets Hy are half-spaces

and, in particular, closed and convex, it follows that ∂f(x) is closed and convex.

The subdifferential set ∂f(x) may be empty. When it is nonempty at a given
x ∈ E, the function f is called subdifferentiable at x.

Definition 3.10 (subdifferentiability). A proper function f : E → (−∞,∞] is
called subdifferentiable at x ∈ dom(f) if ∂f(x) 
= ∅.
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40 Chapter 3. Subgradients

The collection of points of subdifferentiability is denoted by dom(∂f):

dom(∂f) = {x ∈ E : ∂f(x) 
= ∅} .

We will now show that if a function is subdifferentiable at any point in its domain,
which is assumed to be convex, then it is necessarily convex.

Lemma 3.11 (nonemptiness of subdifferential sets ⇒ convexity). Let f :
E → (−∞,∞] be a proper function and assume that dom(f) is convex. Suppose
that for any x ∈ dom(f), the set ∂f(x) is nonempty. Then f is convex.

Proof. Let x,y ∈ dom(f) and α ∈ [0, 1]. Define zα = (1 − α)x + αy. By the
convexity of dom(f), zα ∈ dom(f), and hence there exists g ∈ ∂f(zα), which in
particular implies the following two inequalities:

f(y) ≥ f(zα) + 〈g,y − zα〉 = f(zα) + (1− α)〈g,y − x〉,
f(x) ≥ f(zα) + 〈g,x− zα〉 = f(zα)− α〈g,y − x〉.

Multiplying the first inequality by α, the second by 1−α, and summing them yields

f((1− α)x+ αy) = f(zα) ≤ (1− α)f(x) + αf(y).

Since the latter holds for any x,y ∈ dom(f) with dom(f) being convex, it follows
that the function f is convex.

We have thus shown that if a function is subdifferentiable at any point in its
(assumed to be) convex domain, then it is convex. However, this does not mean
that the reverse direction is correct. The next example describes a convex function,
which is not subdifferentiable at one of the points in its domain.

Example 3.12. Consider the convex function f : R → (−∞,∞] defined by

f(x) =

⎧⎪⎨⎪⎩ −
√
x, x ≥ 0,

∞, else.

The function is plotted in Figure 3.2. It is not subdifferentiable at x = 0. To show
this, suppose by contradiction that there exists g ∈ R such that g ∈ ∂f(0). Then

f(y) ≥ f(0) + g(y − 0) for any y ≥ 0,

which is the same as
− √

y ≥ gy for any y ≥ 0. (3.7)

The above is impossible since substituting y = 1, we obtain that g ≤ −1 (and in
particular g < 0), while substituting y = 1

2g2 in (3.7) yields the inequality

−
√
1/(2g2) ≥ 1/(2g),

which is equivalent to the impossible inequality (utilizing the fact that g < 0)

1

2g2
≤ 1

4g2
.
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3.2. Properties of the Subdifferential Set 41

5 0 0.5 1 1.5 2
5

5

0

0.5

1

x

f(
x)

Figure 3.2. The function f(x) = −√
x with dom(f) = R+. The function

is not subdifferentiable at x = 0.

Although, as demonstrated in Example 3.12, convex functions are not neces-
sarily subdifferentiable at any point in their domain, they must be subdifferentiable
at any point in the interior of their domain. This is stated in Theorem 3.14 below,
which also shows the boundedness of the subdifferential set in this setting. The
proof of the theorem strongly relies on the supporting hyperplane theorem stated
explicitly below.

Theorem 3.13 (supporting hyperplane theorem [29, Proposition 2.4.1]).
Let ∅ 
= C ⊆ E be a convex set, and let y /∈ int(C). Then there exists 0 
= p ∈ E∗

such that
〈p,x〉 ≤ 〈p,y〉 for any x ∈ C.

Theorem 3.14 (nonemptiness and boundedness of the subdifferential set
at interior points of the domain). Let f : E → (−∞,∞] be a proper convex
function, and assume that x̃ ∈ int(dom(f)). Then ∂f(x̃) is nonempty and bounded.

Proof. Recall that the inner product in the product space E×R is defined as (see
Section 1.9)

〈(y1, β1), (y2, β2)〉 ≡ 〈y1,y2〉+ β1β2, (y1, β1), (y2, β2) ∈ E× R.

Since (x̃, f(x̃)) is on the boundary of epi(f) ⊆ E×R, it follows by the supporting hy-
perplane theorem (Theorem 3.13) that there exists a separating hyperplane between
(x̃, f(x̃)) and epi(f), meaning that there exists a nonzero vector (p,−α) ∈ E∗ × R

for which
〈p, x̃〉 − αf(x̃) ≥ 〈p,x〉 − αt for any (x, t) ∈ epi(f). (3.8)

Note that α ≥ 0 since (x̃, f(x̃) + 1) ∈ epi(f), and hence plugging x = x̃ and
t = f(x̃) + 1 into (3.8) yields

〈p, x̃〉 − αf(x̃) ≥ 〈p, x̃〉 − α(f(x̃) + 1),
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42 Chapter 3. Subgradients

implying that α ≥ 0. Since x̃ ∈ int(dom(f)), it follows by the local Lipschitz
continuity property of convex functions (Theorem 2.21) that there exist ε > 0 and
L > 0 such that B‖·‖[x̃, ε] ⊆ dom(f) and

|f(x)− f(x̃)| ≤ L‖x− x̃‖ for any x ∈ B‖·‖[x̃, ε]. (3.9)

Since B‖·‖[x̃, ε] ⊆ dom(f), it follows that (x, f(x)) ∈ epi(f) for any x ∈ B‖·‖[x̃, ε].
Therefore, plugging t = f(x) into (3.8), yields that

〈p,x− x̃〉 ≤ α(f(x)− f(x̃)) for any x ∈ B‖·‖[x̃, ε]. (3.10)

Combining (3.9) and (3.10), we obtain that for any x ∈ B‖·‖[x̃, ε],

〈p,x− x̃〉 ≤ α(f(x) − f(x̃)) ≤ αL‖x− x̃‖. (3.11)

Take p† ∈ E satisfying 〈p,p†〉 = ‖p‖∗ and ‖p†‖ = 1. Since x̃+ εp† ∈ B‖·‖[x̃, ε], we

can plug x = x̃+ εp† into (3.11) and obtain that

ε‖p‖∗ = ε〈p,p†〉 ≤ αLε‖p†‖ = αLε.

Therefore, α > 0, since otherwise we would have α = 0 and p = 0, which is
impossible by the fact that the vector (p, α) is not the zeros vector. Taking t = f(x)
in (3.8) and dividing by α yields

f(x) ≥ f(x̃) + 〈g,x− x̃〉 for all x ∈ dom(f), (3.12)

where g = p/α. Thus, g ∈ ∂f(x̃), establishing the nonemptiness of ∂f(x̃). To show
the boundedness of ∂f(x̃), let g ∈ ∂f(x̃), meaning that (3.12) holds. Take g† ∈ E

for which ‖g‖∗ = 〈g,g†〉 and ‖g†‖ = 1. Then plugging x = x̃+ εg† in (3.12) yields

ε‖g‖∗ = ε〈g,g†〉 = 〈g,x− x̃〉 ≤ f(x)− f(x̃)
(3.9)

≤ L‖x− x̃‖ = Lε,

showing that ∂f(x̃) ⊆ B‖·‖∗ [0, L], and hence establishing the boundedness of
∂f(x̃).

The result of Theorem 3.14 can be stated as the following inclusion relation:

int(dom(f)) ⊆ dom(∂f).

A direct consequence of Theorem 3.14 is that real-valued convex functions (namely,
convex functions f with dom(f) = E) are subdifferentiable at any point.

Corollary 3.15 (subdifferentiability of real-valued convex functions). Let
f : E → R be a convex function. Then f is subdifferentiable over E.

We can extend the boundedness result of Theorem 3.14 and show that sub-
gradients of points in a given compact set contained in the interior of the domain
are always bounded.

Theorem 3.16 (boundedness of subgradients over compact sets). Let f :
E → (−∞,∞] be a proper convex function, and assume that X ⊆ int(dom(f)) is
nonempty and compact. Then Y =

⋃
x∈X ∂f(x) is nonempty and bounded.
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3.2. Properties of the Subdifferential Set 43

Proof. The set Y is nonempty, since by Theorem 3.14 ∂f(x) 
= ∅ for any x ∈ X .
To prove the boundedness, assume by contradiction that there exists a sequence
{xk}k≥1 ⊆ X and gk ∈ ∂f(xk) such that ‖gk‖∗ → ∞ as k → ∞. For any k,

let g†k be a vector satisfying 〈gk,g†k〉 = ‖gk‖∗ and ‖g†k‖ = 1. Since X is compact,
(int(dom(f)))c (the complement of int(dom(f))) is closed, andX∩(int(dom(f)))c =
∅, it follows that the distance between the two sets is nonempty, meaning in partic-
ular that there exists an ε > 0 for which10

‖x− y‖ ≥ ε for any x ∈ X,y /∈ int(dom(f)). (3.13)

The relation gk ∈ ∂f(xk) implies in particular that

f
(
xk +

ε

2
g†k

)
− f(xk) ≥

ε

2
〈gk,g†k〉 =

ε

2
‖gk‖∗, (3.14)

where we used the fact that by (3.13), xk + ε
2g
†
k ∈ int(dom(f)). We will show

that the left-hand side of (3.14) is bounded. Suppose by contradiction that it is

not bounded. Then there exist subsequences {xk}k∈T , {g†k}k∈T (T being the set of
indices of the subsequences) for which

f
(
xk +

ε

2
g†k

)
− f(xk) → ∞ as k

T−→ ∞. (3.15)

Since both {xk}k∈T and {g†k}k∈T are bounded, it follows that there exist convergent

subsequences {xk}k∈S , {g†k}k∈S (S ⊆ T ) whose limits will be denoted by x̄ and ḡ.

Consequently, xk +
ε
2g
†
k → x̄+ ε

2 ḡ as k
S−→ ∞. Since xk,xk +

ε
2g
†
k, x̄+ ε

2 ḡ are all11

in int(dom(f)), it follows by the continuity of f over int(dom(f)) (Theorem 2.21)
that

f
(
xk +

ε

2
g†k

)
− f(xk) → f

(
x̄+

ε

2
ḡ†
)
− f(x̄) as k

S−→ ∞,

which is a contradiction of (3.15). We can thus conclude that the left-hand side of
(3.14) is bounded and hence that the right-hand side of (3.14) is also bounded, in
contradiction to our assumption that ‖gk‖∗ goes to ∞ as k → ∞.

Subdifferentiability can be guaranteed for points that are not necessarily in
the interior of the domain but are in the interior of the domain w.r.t. its affine hull.
This is the notion of relative interior that we now recall:

ri(S) = {x ∈ aff(S) : B[x, ε] ∩ aff(S) ⊆ S for some ε > 0}.
One key property of the relative interior is that it is nonempty for convex sets.

Theorem 3.17 (nonemptiness of the relative interior [108, Theorem 6.2]).
Let C ⊆ E be a nonempty convex set. Then ri(C) is nonempty.

10The proof of (3.13) is simple. Suppose by contradiction that there exist sequences {xk}k≥1 ⊆
X and {yk}k≥1 ⊆ (int(dom(f)))c satisfying ‖xk−yk‖ → 0 as k → ∞. Since {xk}k≥1 is bounded,
there exists M > 0 for which ‖xk‖ ≤ M for all k. Therefore, ‖yk‖ ≤ ‖xk − yk‖ + ‖xk‖ ≤ ‖xk −
yk‖+M , and we can conclude by the boundedness of {‖xk − yk‖}k≥1 that {yk}k≥1 is bounded.
By the Bolzano–Weierstrass theorem, there exist convergent subsequences xkj

→ x̄,ykj
→ ȳ, and

by the closedness of X and (int(dom(f)))c , we have that x̄ ∈ X, ȳ ∈ (int(dom(f)))c . The limit
‖xkj

− ykj
‖ → 0 as j → ∞ now brings us to the impossible equality x̄ = ȳ.

11The fact that x̄+ ε
2
ḡ ∈ int(dom(f)) follows by (3.13) and the relations x̄ ∈ X and ‖ḡ‖ = 1.
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44 Chapter 3. Subgradients

A well-known result is that a proper convex function is always subdifferentiable
at relative interior points of its domain. We state this result without a proof.

Theorem 3.18 (nonemptiness of the subdifferential set at relative interior
points [108, Theorem 23.4]). Let f : E → (−∞,∞] be a proper convex function,
and let x̃ ∈ ri(dom(f)). Then ∂f(x̃) is nonempty.

The result stated in Theorem 3.18 can be written as the inclusion

ri(dom(f)) ⊆ dom(∂f).

Since the relative interior of dom(f) is always nonempty (Theorem 3.17), we can
conclude that there always exists a point in the domain for which the subdifferential
set is nonempty.

Corollary 3.19. Let f : E → (−∞,∞] be a proper convex function. Then there
exists x ∈ dom(f) for which ∂f(x) is nonempty.

One instance in which the subdifferential set ∂f(x) is guaranteed to be un-
bounded is when the dimension of the domain of the function is strictly smaller than
the dimension of the underlying space E.

Theorem 3.20 (unboundedness of the subdifferential set when dim(dom(f))
< dim(E)). Let f : E → (−∞,∞] be a proper convex function. Suppose that
dim(dom(f)) < dim(E) and let x ∈ dom(f). If ∂f(x) 
= ∅, then ∂f(x) is un-
bounded.

Proof. Let η be an arbitrary vector in ∂f(x). The set12 V ≡ aff(dom(f))−{x} is
a vector space. The dimension condition translates to dim(V) < dim(E), which in
particular implies that there exists a nonzero vector v ∈ E such that 〈v,w〉 = 0 for
any w ∈ V. Take any β ∈ R. For any y ∈ dom(f),

f(y) ≥ f(x) + 〈η,y − x〉 = f(x) + 〈η + βv,y − x〉,

where the equality is due to the fact that y − x ∈ V. We thus obtained that
η + βv ∈ ∂f(x) for any β, implying the unboundedness of ∂f(x).

3.3 Directional Derivatives

3.3.1 Definition and Basic Properties

Let f : E → (−∞,∞] be a proper function and let x ∈ int(dom(f)). The directional
derivative of f at x in a given direction d ∈ E, if it exists, is defined by

f ′(x;d) ≡ lim
α→0+

f(x+ αd)− f(x)

α
.

A well-known result states that convex functions have directional derivatives in all
directions at points in the interior of their domains.

12Here the notation “−” stands for the Minkowski difference.
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3.3. Directional Derivatives 45

Theorem 3.21 ([108, Theorem 23.1]13). Let f : E → (−∞,∞] be a proper
convex function and let x ∈ int(dom(f)). Then for any d ∈ E, the directional
derivative f ′(x;d) exists.

It is important to establish some basic properties of the function d �→ f ′(x;d).
The next theorem shows that it is convex and homogeneous of degree 1.

Lemma 3.22 (convexity and homogeneity of d �→ f ′(x;d)). Let f : E →
(−∞,∞] be a proper convex function and let x ∈ int(dom(f)). Then

(a) the function d �→ f ′(x;d) is convex;

(b) for any λ ≥ 0 and d ∈ E, it holds that f ′(x;λd) = λf ′(x;d).

Proof. (a) To show that the function g(d) ≡ f ′(x;d) is convex, take d1,d2 ∈ E

and λ ∈ [0, 1]. Then

f ′(x;λd1 + (1 − λ)d2)

= lim
α→0+

f(x+ α[λd1 + (1− λ)d2])− f(x)

α

= lim
α→0+

f(λ(x + αd1) + (1 − λ)(x+ αd2))− f(x)

α

≤ lim
α→0+

λf(x + αd1) + (1− λ)f(x + αd2)− f(x)

α

= λ lim
α→0+

f(x+ αd1)− f(x)

α
+ (1− λ) lim

α→0+

f(x+ αd2)− f(x)

α

= λf ′(x;d1) + (1− λ)f ′(x;d2),

where the inequality follows from Jensen’s inequality for convex functions.
(b) If λ = 0, the claim is trivial. Take λ > 0. Then

f ′(x;λd) = lim
α→0+

f(x+ αλd)− f(x)

α
= λ lim

α→0+

f(x+ αλd)− f(x)

αλ
= λf ′(x;d).

The next result highlights a connection between function values and directional
derivatives under a convexity assumption.

Lemma 3.23. Let f : E → (−∞,∞] be a proper convex function, and let x ∈
int(dom(f)). Then

f(y) ≥ f(x) + f ′(x;y − x) for all y ∈ dom(f).

13See also [10, Theorem 7.37].
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46 Chapter 3. Subgradients

Proof. By the definition of the directional derivative,

f ′(x;y − x) = lim
α→0+

f(x+ α(y − x))− f(x)

α

= lim
α→0+

f((1− α)x + αy) − f(x)

α

≤ lim
α→0+

−αf(x) + αf(y)

α

= f(y)− f(x),

where the inequality follows by Jensen’s inequality.

A useful “calculus” rule for directional derivatives shows how to compute the
directional derivative of maximum of a finite collection of functions without any
convexity assumptions.

Theorem 3.24 (directional derivative of maximum of functions). Suppose
that f(x) = max{f1(x), f2(x), . . . , fm(x)}, where f1, f2, . . . , fm : E → (−∞,∞] are
proper functions. Let x ∈

⋂m
i=1 int(dom(fi)) and d ∈ E. Assume that f ′i(x;d) exist

for any i ∈ {1, 2, . . . ,m}. Then

f ′(x;d) = max
i∈I(x)

f ′i(x;d),

where I(x) = {i : fi(x) = f(x)}.

Proof. For any i ∈ {1, 2, . . . ,m},

lim
t→0+

fi(x+ td) = lim
t→0+

[
t
fi(x+ td)− fi(x)

t
+ fi(x)

]
= 0 · f ′i(x;d)+ fi(x) = fi(x).

(3.16)
By the definition of I(x), fi(x) > fj(x) for any i ∈ I(x), j /∈ I(x). Utilizing (3.16),
it follows that there exists an ε > 0 such that fi(x + td) > fj(x + td) for any
i ∈ I(x), j /∈ I(x) and t ∈ (0, ε]. Therefore, for any t ∈ (0, ε],

f(x+ td) = max
i=1,2,...,m

fi(x+ td) = max
i∈I(x)

fi(x+ td).

Consequently, for any t ∈ (0, ε],

f(x+ td)− f(x)

t
=

maxi∈I(x) fi(x+ td)− f(x)

t
= max

i∈I(x)

fi(x + td)− fi(x)

t
,

where the last equality follows from the fact that f(x) = fi(x) for any i ∈ I(x).
Finally, taking t → 0+, we obtain that

f ′(x;d) = lim
t→0+

f(x+ td)− f(x)

t

= lim
t→0+

max
i∈I(x)

fi(x+ td)− fi(x)

t

= max
i∈I(x)

lim
t→0+

fi(x+ td)− fi(x)

t

= max
i∈I(x)

f ′i(x;d).
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3.3. Directional Derivatives 47

Note that an assumption of Theorem 3.24 is that the directional deriva-
tives f ′i(x;d) exist. This assumption is automatically satisfied when the functions
f1, f2, . . . , fm are convex. We can thus write the next corollary that replaces the
condition on the existence of the directional derivatives by a convexity assumption.

Corollary 3.25 (directional derivative of maximum of functions—convex
case). Suppose that f(x) = max{f1(x), f2(x), . . . , fm(x)}, where f1, f2, . . . , fm :
E → (−∞,∞] are proper convex functions. Let x ∈

⋂m
i=1 int(dom(fi)) and d ∈ E.

Then
f ′(x;d) = max

i∈I(x)
f ′i(x;d),

where I(x) = {i : fi(x) = f(x)}.

3.3.2 The Max Formula

We will now prove an extremely important and useful result, known as the max
formula, that connects subgradients and directional derivatives.

Theorem 3.26 (max formula). Let f : E → (−∞,∞] be a proper convex func-
tion. Then for any x ∈ int(dom(f)) and d ∈ E,

f ′(x;d) = max {〈g,d〉 : g ∈ ∂f(x)} . (3.17)

Proof. Let x ∈ int(dom(f)) and d ∈ E. By the subgradient inequality, we have
that for any g ∈ ∂f(x),

f ′(x;d) = lim
α→0+

1

α
(f(x+ αd)− f(x)) ≥ lim

α→0+
〈g,d〉 = 〈g,d〉 (3.18)

and, consequently,
f ′(x;d) ≥ max{〈g,d〉 : g ∈ ∂f(x)}. (3.19)

All that is left is to show the reverse direction of the above inequality. For that,
define the function h(w) ≡ f ′(x;w). Then by Lemma 3.22(a), h is a real-valued
convex function and is thus subdifferentiable over E (Corollary 3.15). Let g̃ ∈ ∂h(d).
Then for any v ∈ E and α ≥ 0, using the homogeneity of h (Lemma 3.22(b)),

αf ′(x;v) = f ′(x;αv) = h(αv) ≥ h(d) + 〈g̃, αv − d〉 = f ′(x;d) + 〈g̃, αv − d〉.

Therefore,
α(f ′(x;v) − 〈g̃,v〉) ≥ f ′(x;d) − 〈g̃,d〉. (3.20)

Since the above inequality holds for any α ≥ 0, it follows that the coefficient of α
in the left-hand side expression is nonnegative (otherwise, inequality (3.20) would
be violated for large enough α), meaning that

f ′(x;v) ≥ 〈g̃,v〉.

Thus, by Lemma 3.23, for any y ∈ dom(f),

f(y) ≥ f(x) + f ′(x;y − x) ≥ f(x) + 〈g̃,y − x〉,
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48 Chapter 3. Subgradients

showing that g̃ ∈ ∂f(x). Taking α = 0 in (3.20), we have that f ′(x;d) ≤ 〈g̃,d〉, so
that

f ′(x;d) ≤ 〈g̃,d〉 ≤ max{〈g,d〉 : g ∈ ∂f(x)},
establishing the desired result.

Remark 3.27. The max formula (3.17) can also be rewritten using the support
function notation as follows:

f ′(x;d) = σ∂f(x)(d).

3.3.3 Differentiability

Definition 3.28 (differentiability). Let f : E → (−∞,∞] and x ∈ int(domf).
The function f is said to be differentiable at x if there exists g ∈ E∗ such that

lim
h→0

f(x+ h)− f(x)− 〈g,h〉
‖h‖ = 0. (3.21)

The unique14 vector g satisfying (3.21) is called the gradient of f at x and is
denoted by ∇f(x).

The above is actually a definition of Fréchet differentiability, which is the one
used in this book.

If f is differentiable at x ∈ int(domf), then the directional derivative has a
simple formula.

Theorem 3.29 (directional derivatives at points of differentiability). Let
f : E → (−∞,∞] be proper, and suppose that f is differentiable at x ∈ int(domf).
Then for any d ∈ E

f ′(x;d) = 〈∇f(x),d〉. (3.22)

Proof. The formula is obviously correct for d = 0. Suppose that d 
= 0. The
differentiability of f implies that

0 = lim
α→0+

f(x+ αd)− f(x)− 〈∇f(x), αd〉
‖αd‖

= lim
α→0+

[
f(x+ αd)− f(x)

α‖d‖ − 〈∇f(x),d〉
‖d‖

]
.

Therefore,

f ′(x;d) = lim
α→0+

f(x+ αd)− f(x)

α

= lim
α→0+

{
‖d‖

[
f(x+ αd)− f(x)

α‖d‖ − 〈∇f(x),d〉
‖d‖

]
+ 〈∇f(x),d〉

}
= 〈∇f(x),d〉.

14The uniqueness can be shown by the following argument. Suppose that (3.21) is satisfied
by both g = g1 and g = g2. Then by subtracting the two limits, we obtain that limh→0〈g1 −
g2,h〉/‖h‖ = 0, which immediately shows that g1 = g2.
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3.3. Directional Derivatives 49

Example 3.30 (directional derivative of maximum of differentiable func-
tions). Consider the function f(x) = maxi=1,2,...,m fi(x), where fi : E → (−∞,∞]
are proper functions. Assume that f1, f2, . . . , fm are differentiable at a given point
x ∈ ∩mi=1int(dom(fi). Then by Theorem 3.29, for any d ∈ E, f ′i(x;d) = 〈∇fi(x),d〉.
Therefore, invoking Theorem 3.24,

f ′(x;d) = max
i∈I(x)

f ′i(x;d) = max
i∈I(x)

〈∇fi(x),d〉,

where I(x) = {i : fi(x) = f(x)}.

Example 3.31 (gradient of 1
2
d2
C(·)).15 Suppose that E is a Euclidean space,

and let C ⊆ E be nonempty closed and convex set. Consider the function ϕC : E →
R given by ϕC(x) ≡ 1

2d
2
C(x) =

1
2‖x−PC(x)‖2, where PC is the so-called orthogonal

projection mapping defined by

PC(x) ≡ argminy∈C‖y − x‖.

It is well known that PC is well defined (exists and unique) when the underlying
set C is nonempty, closed, and convex.16 We will show that for any x ∈ E,

∇ϕC(x) = x− PC(x). (3.23)

For that, fix x ∈ E and define the function gx by

gx(d) ≡ ϕC(x+ d)− ϕC(x) − 〈d, zx〉,
where zx = x−PC(x). By the definition of the gradient, to show (3.23), it is enough
to establish that

gx(d)

‖d‖ → 0 as d → 0. (3.24)

To prove (3.24), note that by the definition of the orthogonal projection, we have
for any d ∈ E

‖x+ d− PC(x+ d)‖2 ≤ ‖x+ d− PC(x)‖2,
which implies that for any d ∈ E,

gx(d) =
1

2
‖x+ d− PC(x+ d)‖2 − 1

2
‖x− PC(x)‖2 − 〈d, zx〉

≤ 1

2
‖x+ d− PC(x)‖2 − 1

2
‖x− PC(x)‖2 − 〈d, zx〉

=
1

2
‖x− PC(x)‖2 + 〈d,x− PC(x)〉+

1

2
‖d‖2 − 1

2
‖x− PC(x)‖2 − 〈d, zx〉

=
1

2
‖d‖2. (3.25)

In particular, we also have

gx(−d) ≤ 1

2
‖d‖2. (3.26)

15The proof in Example 3.31 follows Beck and Teboulle [20, proof of Theorem 4.1].
16See, for example, [10, Theorem 8.8]. In addition, see Section 6.4.
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50 Chapter 3. Subgradients

Since ϕC is convex, so is gx. Therefore, by Jensen’s inequality, and noting that
gx(0) = 0,

0 = gx(0) = gx

(
d+ (−d)

2

)
≤ 1

2
(gx(d) + gx(−d)). (3.27)

Combining (3.26) and (3.27), we get

gx(d) ≥ −gx(−d) ≥ −1

2
‖d‖2. (3.28)

Finally, by (3.25) and (3.28), it follows that |gx(d)| ≤ 1
2‖d‖2, from which the limit

(3.24) follows and hence also the desired result (3.23).

Remark 3.32 (what is the gradient?). We will now illustrate the fact that the
gradient depends on the choice of the inner product in the underlying space. Let
E = Rn be endowed with the dot product. By Theorem 3.29 we know that when f is
differentiable at x, then

(∇f(x))i = 〈∇f(x), ei〉 = f ′(x; ei);

that is, in this case, the ith component of ∇f(x) is equal to ∂f
∂xi

(x) = f ′(x; ei)—the
ith partial derivative of f at x—so that ∇f(x) = Df (x), where

Df (x) ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂f
∂x1

(x)

∂f
∂x2

(x)

...

∂f
∂xn

(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.29)

Note that the definition of the directional derivative does not depend on the choice
of the inner product in the underlying space, so we can arbitrarily choose the inner
product in the formula (3.22) as the dot product and obtain (recalling that in this
case ∇f(x) = Df(x))

f ′(x;d) = Df(x)
Td =

n∑
i=1

∂f

∂xi
(x)di. (3.30)

Formula (3.30) holds for any choice of inner product in the space. However, ∇f(x)
is not necessarily equal to Df (x) when the endowed inner product is not the dot
product. For example, suppose that the inner product is given by

〈x,y〉 = xTHy, (3.31)

where H is a given n× n positive definite matrix. In this case,

(∇f(x))i = ∇f(x)T ei = ∇f(x)TH
(
H−1ei

)
= 〈∇f(x),H−1ei〉 [by (3.31)]

= f ′(x;H−1ei) [by (3.22)]

= Df (x)
TH−1ei. [by (3.30)]
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3.3. Directional Derivatives 51

Hence, we obtain that with respect to the inner product (3.31), the gradient is actu-
ally a “scaled”/“weighted” gradient:

∇f(x) = H−1Df (x).

Now consider the space E = R
m×n of all m × n real-valued matrices with the dot

product as the endowed inner product:

〈x,y〉 = Tr(xTy) for any x,y ∈ R
m×n.

Given a proper function f : Rm×n → (−∞,∞] and x ∈ int(dom(f)), the gradient,
if it exists, is given by ∇f(x) = Df (x), where Df(x) is the m× n matrix

Df (x) =

(
∂f

∂xij
(x)

)
i,j

.

If the inner product is replaced by

〈x,y〉 = Tr(xTHy),

where H is a given m×m positive definite matrix, then a similar argument to the
one given previously shows that

∇f(x) = H−1Df (x).

We will now show that when a convex function is differentiable at a point in
the interior of its domain, then the subdifferential set is the singleton (i.e., a set
containing a single vector) consisting of the gradient at the point. The reverse is
also correct in the sense that if the subdifferential set is a singleton {g}, then the
function is differentiable at the given point with g being its gradient.

Theorem 3.33 (the subdifferential at points of differentiability). Let
f : E → (−∞,∞] be a proper convex function, and let x ∈ int(dom(f)). If f
is differentiable at x, then ∂f(x) = {∇f(x)}. Conversely, if f has a unique subgra-
dient at x, then it is differentiable at x and ∂f(x) = {∇f(x)}.

Proof. Let x ∈ int(dom(f)) and assume that f is differentiable at x. Then by
Theorem 3.29 it follows that for any d ∈ E,

f ′(x;d) = 〈∇f(x),d〉. (3.32)

Let g ∈ ∂f(x). We will show that g = ∇f(x). Combining (3.32) with the max
formula (Theorem 3.26) we have

〈∇f(x),d〉 = f ′(x;d) ≥ 〈g,d〉,

so that
〈g − ∇f(x),d〉 ≤ 0.

Taking the maximum over all d satisfying ‖d‖ ≤ 1, we obtain that ‖g−∇f(x)‖∗ ≤ 0
and consequently that ∇f(x) = g. We have thus shown that the only possible
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52 Chapter 3. Subgradients

subgradient in ∂f(x) is ∇f(x). Combining this with the fact that the subdifferential
set is nonempty (Theorem 3.14) yields the desired result ∂f(x) = {∇f(x)}.

For the reverse direction, suppose that f has a unique subgradient g at x ∈
int(dom(f)). Consider the convex function

h(u) ≡ f(x+ u)− f(x)− 〈g,u〉.

We will show that

lim
u→0

h(u)

‖u‖ = 0.

This will establish (by definition) that g = ∇f(x). Obviously, 0 is the unique
subgradient of h at 0 and 0 ∈ int(dom(h)), and hence by the max formula (Theorem
3.26), for any d ∈ E,

h′(0;d) = σ∂h(0)(d) = 0.

We can thus conclude that for any d ∈ E,

0 = h′(0;d) = lim
α→0+

h(αd)− h(0)

α
= lim

α→0+

h(αd)

α
. (3.33)

Let {v1,v2, . . . ,vk} be an orthonormal basis of E. Since 0 ∈ int(dom(h)), there
exists ε ∈ (0, 1) such that εvi,−εvi ∈ dom(h) for any i = 1, 2, . . . , k. Therefore,
since dom(h) is convex, the set

D = conv
(
{±εvi}ki=1

)
satisfies D ⊆ dom(h). Let ‖ · ‖ =

√
〈·, ·〉 be the Euclidean norm corresponding to

the endowed inner product on E. Note that B‖·‖[0, γ] ⊆ D, where γ = ε
k . Indeed,

let w ∈ B‖·‖[0, γ]. Then since {v1,v2, . . . ,vk} is an orthonormal basis of E, we
have

w =

k∑
i=1

〈w,vi〉vi

as well as

‖w‖2 =

k∑
i=1

〈w,vi〉2. (3.34)

Since ‖w‖2 ≤ γ2, it follows by (3.34) that |〈w,vi〉| ≤ γ, and hence

w =

k∑
i=1

〈w,vi〉vi =
k∑
i=1

|〈w,vi〉|
ε

[sgn(〈w,vi〉)εvi] +
(
1−

k∑
i=1

|〈w,vi〉|
ε

)
· 0 ∈ D,

where the membership inD follows by the fact that 0,±εvi ∈ D and
∑k

i=1
|〈w,vi〉|

ε ≤
kγ
ε = 1. We have therefore established the inclusion B‖·‖[0, γ] ⊆ D. Denote the

2k vectors {±εvi}ki=1 by z1, z2, . . . , z2k. Take 0 
= u ∈ B‖·‖[0, γ
2]. We have that

γ u
‖u‖ ∈ B‖·‖[0, γ] ⊆ D, and hence there exists λ ∈ Δ2k such that

γ
u

‖u‖ =

2k∑
i=1

λizi.
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3.4. Computing Subgradients 53

Therefore,

h(u)

‖u‖ =
h
(
‖u‖
γ γ u

‖u‖

)
‖u‖ =

h
(∑2k

i=1 λi
‖u‖
γ zi

)
‖u‖

≤
2k∑
i=1

λi
h
(
‖u‖ zi

γ

)
‖u‖

≤ max
i=1,2,...,2k

⎧⎨⎩h
(
‖u‖ zi

γ

)
‖u‖

⎫⎬⎭ , (3.35)

where the first inequality follows by the convexity of h and by the fact that ‖u‖ zi
γ ∈

B‖·‖[0, γ] ⊆ D ⊆ dom(h). By (3.33),

lim
u→0

h
(
‖u‖ zi

γ

)
‖u‖ = lim

‖u‖→0

h
(
‖u‖ zi

γ

)
‖u‖ = lim

α→0+

h
(
αzi
γ

)
α

= 0,

which, combined with (3.35), implies that h(u)
‖u‖ → 0 as u → 0, proving the desired

result.

Example 3.34 (subdifferential of the l2-norm). Let f : Rn → R be given by
f(x) = ‖x‖2. Then the subdifferential set of f at x = 0 was already computed in
Example 3.3. When x 
= 0, the function is differentiable with gradient x

‖x‖2 . Thus,

using Theorem 3.33, we can summarize and write the subdifferential set as

∂f(x) =

⎧⎪⎨⎪⎩
{

x
‖x‖2

}
, x 
= 0,

B‖·‖2 [0, 1], x = 0.

In particular, when considering the case n = 1, we obtain that for the one-dimensional
function g(x) = |x|, we have

∂g(x) =

⎧⎪⎨⎪⎩ {sgn(x)}, x 
= 0,

[−1, 1], x = 0.

3.4 Computing Subgradients
This section establishes several useful calculus rules for subgradients and subdiffer-
entials. Some of the results are “weak results” (rules for computing some of the
subgradients in the subdifferential set), and some are “strong” (full characterization
of the subdifferential set).
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54 Chapter 3. Subgradients

3.4.1 Multiplication by a Positive Scalar

Theorem 3.35. Let f : E → (−∞,∞] be a proper function and let α > 0. Then
for any x ∈ dom(f)

∂(αf)(x) = α∂f(x).

Proof. We have that g ∈ ∂f(x) if and only if

f(y) ≥ f(x) + 〈g,y − x〉 for any y ∈ dom(f).

Multiplying the inequality by α > 0, we can conclude that the above inequality
holds if and only if

αf(y) ≥ αf(x) + 〈αg,y − x〉 for any y ∈ dom(αf), (3.36)

where we used the obvious fact that dom(αf) = dom(f). The statement (3.36) is
equivalent to the relation αg ∈ ∂(αf)(x).

3.4.2 Summation

The following result contains both weak and strong results on the subdifferential
set of a sum of functions. The weak result is also “weak” in the sense that its proof
only requires the definition of the subgradient. The strong result utilizes the max
formula.

Theorem 3.36. Let f1, f2 : E → (−∞,∞] be proper convex functions, and let
x ∈ dom(f1) ∩ dom(f2).

(a) The following inclusion holds:

∂f1(x) + ∂f2(x) ⊆ ∂(f1 + f2)(x).

(b) If x ∈ int(dom(f1)) ∩ int(dom(f2)), then

∂(f1 + f2)(x) = ∂f1(x) + ∂f2(x).

Proof. (a) Let g ∈ ∂f1(x)+∂f2(x). Then there exist g1 ∈ ∂f1(x) and g2 ∈ ∂f2(x)
such that g = g1 + g2. By the definition of g1 and g2, it follows that for any
y ∈ dom(f1) ∩ dom(f2),

f1(y) ≥ f1(x) + 〈g1,y − x〉,
f2(y) ≥ f2(x) + 〈g2,y − x〉.

Summing the two inequalities, we obtain that for any y ∈ dom(f1) ∩ dom(f2),

f1(y) + f2(y) ≥ f1(x) + f2(x) + 〈g1 + g2,y − x〉,

that is, g = g1 + g2 ∈ ∂(f1 + f2)(x).
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3.4. Computing Subgradients 55

(b) Let d ∈ E and define f ≡ f1 + f2. Then since x ∈ int(dom(f)) =
int(dom(f1)) ∩ int(dom(f2)), it follows by the max formula (Theorem 3.26) that

σ∂f(x)(d) = max {〈g,d〉 : g ∈ ∂f(x)} = f ′(x;d).

Using the additivity of the directional derivative and the max formula (again), we
also obtain

σ∂f(x)(d) = f ′(x;d)

= f ′1(x;d) + f ′2(x;d)

= max {〈g1,d〉 : g1 ∈ ∂f1(x)}+max {〈g2,d〉 : g2 ∈ ∂f2(x)}
= max {〈g1 + g2,d〉 : g1 ∈ ∂f1(x),g2 ∈ ∂f2(x)}}
= σ∂f1(x)+∂f2(x)(d).

By Theorems 3.9 and 3.14, ∂f(x), ∂f1(x), and ∂f2(x) are nonempty compact convex
sets, which also implies (simple exercise) that ∂f1(x) + ∂f2(x) is nonempty com-
pact and convex. Finally, invoking Lemma 2.34, it follows that ∂f(x) = ∂f1(x) +
∂f2(x).

Remark 3.37. Note that the proof of part (a) of Theorem 3.36 does not require a
convexity assumption on f1 and f2.

A simple induction argument can be used to generalize the last result to an
arbitrary number of functions.

Corollary 3.38. Let f1, f2, . . . , fm : E → (−∞,∞] be proper convex functions,
and let x ∈ ∩mi=1dom(fi).

(a) (weak sum rule of subdifferential calculus) The following inclusion
holds:

m∑
i=1

∂fi(x) ⊆ ∂

(
m∑
i=1

fi

)
(x).

(b) If x ∈ ∩mi=1int(dom(fi)), then

∂

(
m∑
i=1

fi

)
(x) =

m∑
i=1

∂fi(x). (3.37)

Another direct consequence is that if f1, f2, . . . , fm are real-valued, meaning
that their domain is the entire space E, then the sum formula (3.37) holds.

Corollary 3.39. Let f1, f2, . . . , fm : E → R be real-valued convex functions. Then
for any x ∈ E

∂

(
m∑
i=1

fi

)
(x) =

m∑
i=1

∂fi(x).
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56 Chapter 3. Subgradients

A result with a less restrictive assumption than the one in Corollary 3.38(b)
states that if the intersection ∩mi=1ri(dom(fi)) is nonempty, then the sum formula
is correct at any point. We state this result without a proof.

Theorem 3.40 (sum rule of subdifferential calculus [108, Theorem 23.8]).
Let f1, f2, . . . , fm : E → (−∞,∞] be proper convex functions, and assume that⋂m
i=1 ri(dom(fi)) 
= ∅. Then for any x ∈ E

∂

(
m∑
i=1

fi

)
(x) =

m∑
i=1

∂fi(x).

Example 3.41 (subdifferential set of the l1-norm function—strong result).
Consider the function f : R

n → R given by f(x) = ‖x‖1 =
∑n

i=1 |xi|. Then
f =

∑n
i=1 fi, where fi(x) ≡ |xi|. We have (see also Example 3.34)

∂fi(x) =

⎧⎪⎨⎪⎩ {sgn(xi)ei}, xi 
= 0,

[−ei, ei], xi = 0.

Thus, by Corollary 3.39,

∂f(x) =

n∑
i=1

∂fi(x) =
∑

i∈I�=(x)

sgn(xi)ei +
∑

i∈I0(x)
[−ei, ei],

where
I=(x) = {i : xi 
= 0}, I0(x) = {i : xi = 0},

and hence

∂f(x) = {z ∈ R
n : zi = sgn(xi), i ∈ I=(x), |zj | ≤ 1, j ∈ I0(x)} .

Example 3.42 (a subgradient of the l1-norm function—weak result). Using
the formula for the subdifferential set described in Example 3.41, we can readily
conclude that

sgn(x) ∈ ∂f(x).

3.4.3 Affine Transformation

The following theorem states strong and weak results on the subdifferential set of
a composition of a convex function with an affine transformation.

Theorem 3.43. Let f : E → (−∞,∞] be a proper convex function and A : V → E

be a linear transformation. Let h(x) = f(A(x) + b) with b ∈ E. Assume that h is
proper, meaning that

dom(h) = {x ∈ V : A(x) + b ∈ dom(f)} 
= ∅.
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3.4. Computing Subgradients 57

(a) (weak affine transformation rule of subdifferential calculus) For any
x ∈ dom(h),

AT (∂f(A(x) + b)) ⊆ ∂h(x).

(b) (affine transformation rule of subdifferential calculus) If x ∈ int(dom(h))
and A(x) + b ∈ int(dom(f)), then

∂h(x) = AT (∂f(A(x) + b)).

Proof. (a) Let x ∈ dom(h) and assume that g ∈ AT (∂f(A(x) + b)). Then there
exists d ∈ E∗ for which g = AT (d), where

d ∈ ∂f(A(x) + b). (3.38)

For any y ∈ dom(h), we have A(y) + b ∈ dom(f), and hence, by (3.38),

f(A(y) + b) ≥ f(A(x) + b) + 〈d,A(y) + b− A(x)− b〉,

and therefore

h(y) ≥ h(x) + 〈AT (d),y − x〉 for all y ∈ dom(h).

Hence, g = AT (d) ∈ ∂h(x), proving that AT (∂f(A(x) + b)) ⊆ ∂h(x).
(b) Since x ∈ int(dom(h)), then for any d ∈ V, by the max formula (Theorem

3.26),
h′(x;d) = σ∂h(x)(d). (3.39)

In addition, by the definition of the directional derivative, we have

h′(x;d) = lim
α→0+

h(x+ αd)− h(x)

α

= lim
α→0+

f(A(x) + b+ αA(d)) − f(A(x) + b)

α

= f ′(A(x) + b;A(d)),

which, combined with (3.39), yields

σ∂h(x)(d) = f ′(A(x) + b;A(d)).

Therefore, using the max formula again and the assumption that A(x) + b ∈
int(dom(f)), we obtain that

σ∂h(x)(d) = f ′(A(x) + b;A(d))

= max
g

{〈g,A(d)〉 : g ∈ ∂f(A(x) + b)}

= max
g

{
〈AT (g),d〉 : g ∈ ∂f(A(x) + b)

}
= max

g̃

{
〈g̃,d〉 : g̃ ∈ AT (∂f(A(x) + b))

}
= σAT (∂f(A(x)+b))(d).
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58 Chapter 3. Subgradients

Since x ∈ int(dom(h)), it follows by Theorems 3.9 and 3.14 that ∂h(x) is nonempty
compact and convex. Similarly, since A(x)+b ∈ int(dom(f)), the set ∂f(A(x)+b)
is nonempty, compact, and convex, which implies that AT (∂f(A(x) + b)) is also
nonempty, compact, and convex. Finally, invoking Lemma 2.34, we obtain that
∂h(x) = AT (∂f(A(x) + b)).

Example 3.44 (subdifferential of ‖Ax+b‖1). Let f : Rn → R be the function
given by f(x) = ‖Ax + b‖1, where A ∈ Rm×n,b ∈ Rm. Then f(x) = g(Ax + b)
with g : Rm → R given by g(y) = ‖y‖1. By the affine transformation rule of
subdifferential calculus (Theorem 3.43(b)), we have that

∂f(x) = AT∂g(Ax+ b). (3.40)

Denote the ith row of A by aTi and define

I=(x) = {i : aTi x+ bi 
= 0},
I0(x) = {i : aTi x+ bi = 0}.

In this terminology, by Example 3.41,

∂g(Ax+ b) =
∑

i∈I�=(x)

sgn(aTi x+ bi)ei +
∑

i∈I0(x)
[−ei, ei].

Thus, by (3.40),

∂f(x) = AT∂g(Ax+ b)

=
∑

i∈I�=(x)

sgn(aTi x+ bi)A
T ei +

∑
i∈I0(x)

[−ATei,A
Tei].

Using the relation ATei = ai, we finally conclude that

∂f(x) =
∑

i∈I�=(x)

sgn(aTi x+ bi)ai +
∑

i∈I0(x)
[−ai, ai].

The above is a strong result characterizing the entire subdifferential set. A weak
result indicating one possible subgradient is

AT sgn(Ax+ b) ∈ ∂f(x).

Example 3.45 (subdifferential of ‖Ax+b‖2). Let f : Rn → R be the function
f(x) = ‖Ax + b‖2, where A ∈ Rm×n,b ∈ Rm. Then f(x) = g(Ax + b) with
g : Rm → R given by g(y) = ‖y‖2. By Example 3.34,

∂g(Ax+ b) =

⎧⎪⎨⎪⎩
Ax+b
‖Ax+b‖2 , Ax+ b 
= 0,

B‖·‖2 [0, 1], Ax+ b = 0.

Thus, by the affine transformation rule of subdifferential calculus (Theorem 3.43(b)),

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



3.4. Computing Subgradients 59

∂f(x) = AT ∂g(Ax+ b) =

⎧⎪⎨⎪⎩
AT (Ax+b)
‖Ax+b‖2 , Ax+ b 
= 0,

ATB‖·‖2 [0, 1], Ax+ b = 0.

Note that at a vector x satisfying Ax + b = 0, the subdifferential set can be
explicitly written as

∂f(x) = ATB‖·‖2 [0, 1] =
{
ATy : ‖y‖2 ≤ 1

}
.

If a weak result is required, then since 0 ∈ B‖·‖2 [0, 1], we can write 0 = AT0 ∈
∂f(x) for any x satisfying Ax+ b = 0.

3.4.4 Composition

The derivative of a composition of differentiable functions can be computed by using
the well-known chain rule. We recall here the classical result on the derivative of
the composition of two one-dimensional functions. The result is a small variation
of the result from [112, Theorem 5.5].

Theorem 3.46. Suppose that f is continuous on [a, b] (a < b) and that f ′+(a)
exists. Let g be a function defined on an open interval I which contains the range
of f , and assume that g is differentiable at f(a). Then the function

h(t) = g(f(t)) (a ≤ t ≤ b)

is right differentiable at t = a and

h′+(a) = g′(f(a))f ′+(a).

Proof.

h′+(a) = lim
t→a+

g(f(t))− g(f(a))

t− a

= lim
t→a+

g(f(t))− g(f(a))

f(t)− f(a)
· f(t)− f(a)

t− a
= g′(f(a))f ′+(a).

We will now show how the one-dimensional chain rule can be used with the
help of the max formula (Theorem 3.26) to show a multidimensional version of the
chain rule.

Theorem 3.47 (chain rule of subdifferential calculus). Let f : E → R be a
convex function and g : R → R be a nondecreasing convex function. Let x ∈ E, and
suppose that g is differentiable at the point f(x). Let h = g ◦ f . Then

∂h(x) = g′(f(x))∂f(x).

Proof. For any d ∈ E, define the following one-dimensional functions:

fx,d(t) = f(x+ td), t ∈ R,

hx,d(t) = h(x+ td), t ∈ R.
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60 Chapter 3. Subgradients

We have the following simple relation between fx,d and hx,d:

hx,d(t) = h(x+ td) = g(f(x+ td)) = g(fx,d(t)), t ∈ R. (3.41)

The function f is convex by the premise of the theorem, and h is convex since it is a
composition of a nondecreasing convex function with a convex function. Therefore,
the directional derivatives of f and h exist in every direction (Theorem 3.21), and
we have by the definition of the directional derivative that

(fx,d)
′
+(0) = f ′(x;d), (3.42)

(hx,d)
′
+(0) = h′(x;d). (3.43)

Since hx,d = g ◦ fx,d (by (3.41)), fx,d is right differentiable at 0, and g is differen-
tiable at fx,d(0) = f(x), it follows by the chain rule for one-dimensional functions
(Theorem 3.46) that

(hx,d)
′
+(0) = g′(f(x))(fx;d)

′
+(0).

Plugging (3.42) and (3.43) into the latter equality, we obtain

h′(x;d) = g′(f(x))f ′(x;d).

By the max formula (Theorem 3.26), since f and h are convex and x ∈ int(dom(f)) =
int(dom(h)) = E,

h′(x;d) = σ∂h(x)(d), f
′(x;d) = σ∂f(x)(d),

and hence

σ∂h(x)(d) = h′(x;d) = g′(f(x))f ′(x;d) = g′(f(x))σ∂f(x)(d) = σg′(f(x))∂f(x)(d),

where the last equality is due to Lemma 2.24(c) and the fact that g′(f(x)) ≥ 0.
Finally, by Theorems 3.9 and 3.14 the sets ∂h(x), ∂f(x) are nonempty, closed, and
convex, and thus by Lemma 2.34

∂h(x) = g′(f(x))∂f(x).

Example 3.48 (subdifferential of ‖ · ‖2
1). Consider the function h : Rn → R

given by h(x) = ‖x‖21, which can be written as the composition h = g ◦ f , where
f(x) = ‖x‖1 and g(t) = [t]2+ = max{t, 0}2. Both f and g are real-valued convex
functions, and g is nondecreasing and differentiable over R with derivative g′(t) =
2[t]+. Therefore, by the chain rule of subdifferential calculus (Theorem 3.47), for
any x ∈ Rn,

∂h(x) = g′(f(x))∂f(x) = 2 [‖x‖1]+ ∂f(x) = 2‖x‖1∂f(x).

Using the general form of ∂f(x) as derived in Example 3.41, we can write ∂h(x)
explicitly as follows:
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3.4. Computing Subgradients 61

∂h(x) = 2‖x‖1 {z ∈ R
n : zi = sgn(xi), i ∈ I=(x), |zj | ≤ 1, j ∈ I0(x)} ,

where I=(x) = {i : xi 
= 0}, I0(x) = {i : xi = 0}.

Plugging x = 0 into the above formula, we obtain that

∂h(0) = {0}.

Since h has a unique subgradient at x = 0, it follows by Theorem 3.33 that h is
differentiable at x = 0 and ∇h(0) = 0. Note that the function is obviously not
differentiable over Rn. For example, when n = 2, the nondifferentiability points are
{(x1, 0)T : x1 
= 0} ∪ {(0, x2)T : x2 
= 0}, as illustrated in Figure 3.3.
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Figure 3.3. Surface plot of the function f(x1, x2) = (|x1|+ |x2|)2.

Example 3.49 (subdifferential of dC(·)). Suppose that E is a Euclidean space,
and let C ⊆ E be a nonempty closed and convex set (see Example 2.20). The
distance function dC is convex. We will show that

∂dC(x) =

⎧⎪⎨⎪⎩
{

x−PC(x)
dC(x)

}
, x /∈ C,

NC(x) ∩B[0, 1], x ∈ C.

By Example 3.31, we know that the function ϕC(x) =
1
2d

2
C(x) is differentiable and

∂ϕC(x) = {x− PC(x)} (3.44)

for any x ∈ E. Note that ϕC = g ◦ dC , where g(t) = 1
2 [t]

2
+ is a nonincreasing

real-valued convex differentiable function. Then by the chain rule of subdifferential
calculus (Theorem 3.47),

∂ϕC(x) = g′(dC(x))∂dC(x) = [dC(x)]+∂dC(x) = dC(x)∂dC(x). (3.45)
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62 Chapter 3. Subgradients

If x /∈ C, then dC(x) 
= 0, and thus by (3.44) and (3.45),

∂dC(x) =

{
x− PC(x)

dC(x)

}
for any x /∈ C.

Since ∂dC(x) is a singleton for any x /∈ C, it follows in particular, by Theorem 3.33,
that dC is differentiable at points outside C.

Now assume that x ∈ C. We will show that

∂dC(x) = NC(x) ∩B[0, 1].

Indeed, if d ∈ ∂dC(x), then

dC(y) ≥ 〈d,y − x〉 for any y ∈ E. (3.46)

This means in particular that for any y ∈ C

〈d,y − x〉 ≤ 0,

that is, d ∈ NC(x). In addition, taking y = x+ d in (3.46), we get

‖d‖2 = 〈d,x+ d− x〉 ≤ dC(x+ d) ≤ ‖x+ d− x‖ = ‖d‖,

which readily implies that ‖d‖ ≤ 1. We conclude that ∂dC(x) ⊆ NC(x) ∩ B[0, 1].
To show the reverse direction, take d ∈ NC(x) ∩B[0, 1]. Then for any y ∈ E,

〈d,y − x〉 = 〈d,y − PC(y)〉 + 〈d, PC(y)− x〉. (3.47)

Since d ∈ NC(x) and PC(y) ∈ C, it follows by the definition of the normal cone that
〈d, PC(y) − x〉 ≤ 0, which, combined with (3.47), the Cauchy–Schwarz inequality,
and the assertion that ‖d‖ ≤ 1, implies that for any y ∈ E

〈d,y − x〉 ≤ 〈d,y − PC(y)〉 ≤ ‖d‖ · ‖y− PC(y)‖ ≤ ‖y − PC(y)‖ = dC(y),

and hence d ∈ ∂dC(x).

3.4.5 Maximization

The following result shows how to compute the subdifferential set of a maximum of
a finite collection of convex functions.

Theorem 3.50 (max rule of subdifferential calculus). Let f1, f2, . . . , fm :
E → (−∞,∞] be proper convex functions, and define

f(x) = max{f1(x), f2(x), . . . , fm(x)}.

Let x ∈
⋂m
i=1 int(dom(fi)). Then

∂f(x) = conv
(
∪i∈I(x)∂fi(x)

)
,

where I(x) = {i ∈ {1, 2, . . . ,m} : fi(x) = f(x)}.
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3.4. Computing Subgradients 63

Proof. First note that f , as a maximum of convex functions, is convex (see Theorem
2.16(c)) and that by Corollary 3.25 for any d ∈ E,

f ′(x;d) = max
i∈I(x)

f ′i(x;d).

For the sake of simplicity of notation, we will assume that I(x) = {1, 2, . . . , k} for
some k ∈ {1, 2, . . . ,m}. Now, using the max formula (Theorem 3.26), we obtain

f ′(x;d) = max
i=1,2,...,k

f ′i(x;d) = max
i=1,2,...,k

max
gi∈∂fi(x)

〈gi,d〉. (3.48)

Using the fact that for any a1, a2, . . . , ak ∈ R the identity

max{a1, a2, . . . , ak} = max
λ∈Δk

k∑
i=1

λiai

holds, we can continue (3.48) and write

f ′(x;d) = max
λ∈Δk

{
k∑
i=1

λimax{〈gi,d〉 : gi ∈ ∂fi(x)}
}

= max

{〈
k∑
i=1

λigi,d

〉
: gi ∈ ∂fi(x),λ ∈ Δk

}
= max

{
〈g,d〉 : g ∈ conv

(
∪ki=1∂fi(x)

)}
= σA(d),

where A = conv
(
∪ki=1∂fi(x)

)
. By the max formula (Theorem 3.26), since x ∈

int(dom(f)),
f ′(x;d) = σ∂f(x)(d),

and hence
σA(d) = σ∂f(x)(d) for any d ∈ E. (3.49)

The set ∂f(x) is closed and convex by Theorem 3.9, and since x ∈ int(dom(f)), it
is also nonempty and bounded by Theorem 3.14. Similarly, ∂fi(x), i = 1, 2, . . . , k,
are nonempty and compact sets, and hence also is ∪ki=1∂fi(x). We can conclude
that the set A = conv(∪ki=1∂fi(x)), as a convex hull of a nonempty compact set, is
also nonempty and compact.17 In addition, by the definition of the convex hull, A
is convex.

To conclude, both A and ∂f(x) are nonempty closed and convex, and thus
(3.49) implies by Lemma 2.34 that

∂f(x) = A,

which is the desired result.

Example 3.51 (subdifferential of the max function). Let f : Rn → R be given
by f(x) = max{x1, x2, . . . , xn}. Obviously, f(x) = max{f1(x), f2(x), . . . , fn(x)},
where fi(x) = xi, and hence ∂fi(x) = {ei} for any i = 1, 2, . . . , n. Denote

I(x) = {i : f(x) = xi}.
17This follows by [10, Proposition 6.31].
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64 Chapter 3. Subgradients

Then by the max rule of subdifferential calculus (Theorem 3.50),

∂f(x) = conv(∪i∈I(x)∂fi(x)) = conv(∪i∈I(x){ei}),

and hence

∂f(x) =

⎧⎨⎩ ∑
i∈I(x)

λiei :
∑
i∈I(x)

λi = 1, λj ≥ 0, j ∈ I(x)

⎫⎬⎭ .

In particular,
∂f(αe) = Δn for any α ∈ R.

Example 3.52 (subdifferential of the l∞-norm). Let f : Rn → R be given by
f(x) = ‖x‖∞. There are two options. If x = 0, then by Example 3.3 ∂f(0) is the
dual-norm unit ball, and in this case,

∂f(0) = B‖·‖1 [0, 1] = {x ∈ R
n : ‖x‖1 ≤ 1}.

Suppose that x 
= 0. Note that f(x) = max{f1(x), f2(x), . . . , fn(x)} with fi(x) =
|xi| and set

I(x) = {i : |xi| = ‖x‖∞}.
For any i ∈ I(x) we have xi 
= 0, and hence for any such i, ∂fi(x) = {sgn(xi)ei}.
Thus, by the max rule of subdifferential calculus (Theorem 3.50),

∂f(x) = conv
(
∪i∈I(x)∂fi(x)

)
= conv

(
∪i∈I(x){sgn(xi)ei}

)
=

⎧⎨⎩ ∑
i∈I(x)

λisgn(xi)ei :
∑
i∈I(x)

λi = 1, λj ≥ 0, j ∈ I(x)

⎫⎬⎭ .

To conclude,

∂f(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B‖·‖1 [0, 1], x = 0,⎧⎨⎩ ∑
i∈I(x)

λisgn(xi)ei :
∑
i∈I(x)

λi = 1, λj ≥ 0, j ∈ I(x)

⎫⎬⎭ , x 
= 0.

Example 3.53 (subdifferential of piecewise linear functions). Consider the
piecewise linear function f : Rn → R given by

f(x) = max
i=1,2,...,m

{aTi x+ bi},

where ai ∈ Rn, bi ∈ R, i = 1, 2, . . . ,m. The function f can be written as f(x) =
max{f1(x), f2(x), . . . , fm(x)}, where fi(x) = aTi x + bi, i = 1, 2, . . . ,m. Obviously,
∂fi(x) = {ai}. Thus, by the max rule of subdifferential calculus (Theorem 3.50),
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3.4. Computing Subgradients 65

∂f(x) =

⎧⎨⎩ ∑
i∈I(x)

λiai :
∑
i∈I(x)

λi = 1, λj ≥ 0, j ∈ I(x)

⎫⎬⎭ ,

where I(x) = {i : f(x) = aTi x+ bi}.

Example 3.54 (subdifferential of ‖Ax + b‖∞). Consider the function f :
Rn → R given by f(x) = ‖Ax + b‖∞, where A ∈ Rm×n and b ∈ Rm. Then
f(x) = g(Ax+ b), where g : Rm → R is given by g(y) = ‖y‖∞. By Example 3.52,
we have, for any y ∈ Rm,

∂g(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B‖·‖1 [0, 1], y = 0,⎧⎨⎩ ∑
i∈I(y)

λisgn(yi)ei :
∑
i∈I(y)

λi = 1, λj ≥ 0, j ∈ I(y)

⎫⎬⎭ , y 
= 0,

where
I(y) = {i ∈ {1, 2, . . . ,m} : |yi| = ‖y‖∞}.

We can thus use the affine transformation rule of subdifferential calculus (Theorem
3.43(b)) to conclude that ∂f(x) = AT∂g(Ax+ b) is given by

∂f(x) =

⎧⎪⎪⎨
⎪⎪⎩

ATB‖·‖1 [0, 1], Ax+ b = 0,{∑
i∈Ix

λisgn(a
T
i x+ bi)ai :

∑
i∈Ix

λi = 1, λj ≥ 0, j ∈ Ix

}
, Ax+ b �= 0,

where aT1 , a
T
2 , . . . , a

T
m are the rows of A and Ix = I(Ax+ b).

When the index set is arbitrary (for example, infinite), it is still possible to
prove a weak subdifferential calculus rule.

Theorem 3.55 (weak maximum rule of subdifferential calculus). Let I
be an arbitrary set, and suppose that any i ∈ I is associated with a proper convex
function fi : E → (−∞,∞]. Let

f(x) = max
i∈I

fi(x). (3.50)

Then for any x ∈ dom(f)

conv
(
∪i∈I(x)∂fi(x)

)
⊆ ∂f(x), (3.51)

where I(x) = {i ∈ I : f(x) = fi(x)}.

Proof. Let x ∈ dom(f). Then for any z ∈ dom(f), i ∈ I(x) and g ∈ ∂fi(x),

f(z) ≥ fi(z) ≥ fi(x) + 〈g, z− x〉 = f(x) + 〈g, z− x〉, (3.52)

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



66 Chapter 3. Subgradients

where the first inequality follows from (3.50), the second inequality is the subgra-
dient inequality, and the equality is due to the assertion that i ∈ I(x). Since (3.52)
holds for any z ∈ dom(f), we can conclude that g ∈ ∂f(x). Thus, ∂fi(x) ⊆ ∂f(x).
Finally, by the convexity of ∂f(x) (Theorem 3.9), the result (3.51) follows.

Example 3.56 (subgradient of λmax(A0 +
∑m

i=1 xiAi)). Let A0,A1, . . . ,Am

∈ Sn. Let A : Rm → Sn be the affine transformation given by

A(x) = A0 +
m∑
i=1

xiAi for any x ∈ R
m.

Consider the function f : Rm → R given by f(x) = λmax(A(x)). Since for any
x ∈ Rm,

f(x) = max
y∈Rn:‖y‖2=1

yTA(x)y, (3.53)

and since the function

fy(x) ≡ yTA(x)y = yTA0y +

m∑
i=1

(yTAiy)xi

is affine in x, and in particular convex in x, it follows by Theorem 2.16(c) that f
is convex. For a given x ∈ Rn, the maximum in (3.53) is attained at normalized
eigenvectors which correspond to the maximum eigenvalue of A(x). Let ỹ be such a
normalized eigenvector. Then it follows by the weak maximum rule of subdifferential
calculus (Theorem 3.55) that a subgradient of the affine function fỹ at x is a
subgradient of f at x, that is,

(ỹTA1ỹ, ỹ
TA2ỹ, . . . , ỹ

TAmỹ)T ∈ ∂f(x), (3.54)

where ỹ is a normalized eigenvector of A(x) corresponding to the maximum
eigenvalue.

It is interesting to note that the result (3.54) can also be deduced by the affine
transformation rule of subdifferential calculus (Theorem 3.43(b)). Indeed, let ỹ be
as defined above. The function f can be written as f(x) = g(B(x) + A0), where
B(x) ≡

∑m
i=1 xiAi and g(X) ≡ λmax(X). Then by the affine transformation rule of

subdifferential calculus,

∂f(x) = BT (∂g(B(x) +A0)). (3.55)

By Example 3.8, we know that ỹỹT ∈ ∂g(B(x) +A0), and hence, by (3.55),

BT (ỹỹT ) ∈ ∂f(x).

The result now follows by noting that

BT (ỹỹT ) = (Tr(A1ỹỹ
T ),Tr(A2ỹỹ

T ), . . . ,Tr(AmỹỹT ))T

= (ỹTA1ỹ, ỹ
TA2ỹ, . . . , ỹ

TAmỹ)T .
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3.5. The Value Function 67

3.5 The Value Function
18

Consider the minimization problem

fopt = min
x∈X

{f(x) : gi(x) ≤ 0, i = 1, 2, . . . ,m,Ax+ b = 0}, (3.56)

where f, g1, g2, . . . , gm : E → (−∞,∞] are extended real-valued functions, X ⊆ E

a nonempty set, A ∈ Rp×n, and b ∈ Rp. We will define the vector-valued function
g : E → Rm as

g(x) ≡ (g1(x), g2(x), . . . , gm(x))T ,

so that problem (3.56) can be rewritten more compactly as

min
x∈X

{f(x) : g(x) ≤ 0,Ax+ b = 0}.

The value function associated with problem (3.56) is the function v : Rm ×
Rp → [−∞,∞] given by

v(u, t) = min
x∈X

{f(x) : g(x) ≤ u,Ax+ b = t} . (3.57)

The feasible set of the minimization problem in (3.57) will be denoted by

C(u, t) = {x ∈ X : g(x) ≤ u,Ax+ b = t} ,

so that the value function can also be rewritten as v(u, t) = min{f(x) : x ∈ C(u, t)}.
By convention v(u, t) = ∞ if C(u, t) is empty. A simple property of the value
function v(·, ·) is that it is monotone w.r.t. its first argument.

Lemma 3.57 (monotonicity of the value function). Let f, g1, g2, . . . , gm : E →
(−∞,∞] be extended real-valued functions, X ⊆ E a nonempty set, A ∈ Rp×n, and
b ∈ Rp. Let v be the value function given in (3.57). Then

v(u, t) ≥ v(w, t) for any u,w ∈ R
m, t ∈ R

p satisfying u ≤ w.

Proof. Follows by the obvious fact that C(u, t) ⊆ C(w, t) whenever u ≤ w.

From now on we will also assume in addition that f, g1, g2, . . . , gm, and X are
convex. With these additional assumptions, we now show that the value function
is convex as long as it is proper.

Lemma 3.58 (convexity of the value function). Let f, g1, g2, . . . , gm : E →
(−∞,∞] be convex functions, X ⊆ E a nonempty convex set, A ∈ Rp×n, and
b ∈ Rp. Suppose that the value function v given in (3.57) is proper. Then v is
convex over R

m × R
p.

Proof. Let (u, t), (w, s) ∈ dom(v) and λ ∈ [0, 1]. Since v is proper, to prove the
convexity, we need to show that

v(λu + (1− λ)w, λt + (1− λ)s) ≤ λv(u, t) + (1− λ)v(w, s).

18Section 3.5, excluding Theorem 3.60, follows Hiriart-Urruty and Lemaréchal [67, Section
VII.3.3].
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68 Chapter 3. Subgradients

By the definition of the value function v, there exist sequences {xk}k≥1, {yk}k≥1
satisfying

xk ∈ C(u, t),yk ∈ C(w, s), f(xk) → v(u, t), f(yk) → v(w, s) as k → ∞.

Since xk ∈ C(u, t) and yk ∈ C(w, s), we have g(xk) ≤ u,g(yk) ≤ w. Therefore,
by the convexity of the components of g,

g(λxk + (1− λ)yk) ≤ λg(xk) + (1− λ)g(yk) ≤ λu+ (1− λ)w. (3.58)

Moreover,

A(λxk +(1−λ)yk)+b = λ(Axk +b) + (1−λ)(Ayk +b) = λs+(1−λ)t. (3.59)

Combining (3.58) and (3.59), we conclude that

λxk + (1 − λ)yk ∈ C(λu + (1− λ)w, λs + (1 − λ)t). (3.60)

By the convexity of f ,

f(λxk + (1− λ)yk) ≤ λf(xk) + (1− λ)f(yk). (3.61)

Since λf(xk) + (1 − λ)f(yk) → λv(u, t) + (1 − λ)v(w, s) as k → ∞, by (3.61) we
have

lim inf
k→∞

f(λxk + (1− λ)yk) ≤ λv(u, t) + (1− λ)v(w, s). (3.62)

Finally, since (3.60) holds, by the definition of v, for all k,

v(λu+ (1− λ)w, λt + (1− λ)s) ≤ f(λxk + (1− λ)yk),

and hence

v(λu+ (1− λ)w, λt + (1− λ)s) ≤ lim inf
k→∞

f(λxk + (1− λ)yk),

which, combined with (3.62), yields the inequality

v(λu + (1− λ)w, λt + (1− λ)s) ≤ λv(u, t) + (1− λ)v(w, s),

establishing the convexity of v.

The dual objective function q : Rm+ × R
q → [−∞,∞) of problem (3.56) is

q(y, z) = min
x∈X

{
L(x;y, z) = f(x) + yTg(x) + zT (Ax+ b)

}
,y ∈ R

m
+ , z ∈ R

p.

The dual problem consists of maximizing q on its effective domain given by

dom(−q) = {(y, z) ∈ R
m
+ × R

p : q(y, z) > −∞}.

The dual problem

qopt = max
y∈Rm

+ ,z∈Rp
{q(y, z) : (y, z) ∈ dom(−q)} (3.63)
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3.5. The Value Function 69

is convex in the sense that it consists of maximizing the concave function q over
the convex feasible set dom(−q). We are now ready to show the main result of this
section, which is a relation between the subdifferential set of the value function at
the zeros vector and the set of optimal solutions of the dual problem. The result
is established under the assumption that strong duality holds, meaning under the
assumptions that the optimal values of the primal and dual problems are finite and
equal (fopt = qopt) and the optimal set of the dual problem is nonempty. By the
strong duality theorem stated as Theorem A.1 in the appendix, it follows that these
assumptions are met if the optimal value of problem (3.56) is finite, and if there
exists a feasible solution x̄ satisfying g(x̄) < 0 and a vector x̂ ∈ ri(X) satisfying
Ax̂+ b = 0.

Theorem 3.59 (characterization of the subdifferential of the value func-
tion at 0). Let f, g1, g2, . . . , gm : E → (−∞,∞] be convex functions, X ⊆ E a
nonempty convex set, A ∈ Rp×n, and b ∈ Rp. Let v be the value function given by
(3.57). Suppose that fopt = qopt ∈ (−∞,∞) and that the optimal set of the dual
problem is nonempty. Then

(a) v is proper and convex;

(b) (y, z) is an optimal solution of problem (3.63) if and only if −(y, z) ∈ ∂v(0,0).

Proof. Let (y, z) ∈ dom(−q) be an optimal solution of the dual problem. Then
(recalling that v(0,0) = fopt)

L(x;y, z) ≥ min
w∈X

L(w;y, z) = q(y, z) = qopt = fopt = v(0,0) for all x ∈ X.

Therefore, for any x ∈ C(u, t),

v(0,0)− yTu− zT t ≤ L(x;y, z) − yTu− zT t

= f(x) + yT g(x) + zT (Ax+ b)− yTu− zT t

= f(x) + yT (g(x)− u) + zT (Ax+ b− t)

≤ f(x),

where the last inequality follows from the facts that g(x) ≤ u,y ≥ 0, and Ax+b =
t. We thus obtained the bound

f(x) ≥ v(0,0)− yTu− zT t for any x ∈ C(u, t).

Minimizing the left-hand side w.r.t. x ∈ C(u, t) yields

v(u, t) ≥ v(0,0)− yTu− zT t, (3.64)

which is equivalent to saying that −(y, z) ∈ ∂v(0,0). We actually showed one
direction of claim (b), as well as the properness of v since by (3.64), v(u, t) > −∞
for any (u, t) ∈ Rm × Rp, and by the premise of the theorem, v(0,0) = fopt < ∞.
Invoking Lemma 3.58, it follows that v is convex, establishing claim (a).

All that is left is to show the reverse direction of claim (b). Assume that
−(y, z) ∈ ∂v(0,0), meaning that

v(u, t) ≥ v(0,0)− yTu− zT t for any (u, t) ∈ R
m × R

p. (3.65)
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70 Chapter 3. Subgradients

Let x ∈ X . Then

f(x) ≥ v(g(x),Ax + b)
(3.65)

≥ v(0,0)− yTg(x) − zT (Ax+ b).

Therefore,

v(0,0) ≤ f(x) + yTg(x) + zT (Ax+ b) = L(x;y, z) for any x ∈ X.

Minimizing the right-hand side w.r.t. x ∈ X yields

v(0,0) ≤ min
x∈X

L(x;y, z) = q(y, z). (3.66)

Let j ∈ {1, 2, . . . ,m}. Plugging u = ej , t = 0 into (3.65), we obtain

yj ≥ v(0,0)− v(ej ,0) ≥ 0,

where the second inequality follows from the monotonicity property of the value
function stated in Lemma 3.57. We thus obtained that y ≥ 0, and we can conse-
quently write using (3.66)

qopt = fopt = v(0,0) ≤ q(y, z) ≤ qopt,

showing that q(y, z) = qopt, meaning that (y, z) is an optimal solution of the dual
problem.

Theorem 3.59 can be used to prove a result concerning an optimality measure
of problem (3.56). Consider the following expression:

D(x) ≡ f(x)− fopt + ρ1‖[g(x)]+‖2 + ρ2‖Ax+ b‖2.

Now assume that
D(x̃) ≤ δ (3.67)

for some x̃ ∈ X and a small δ > 0. The question that now arises is whether (3.67)
implies that the expressions f(x̃) − fopt as well as ‖[g(x̃)]+‖2 and ‖Ax̃ + b‖2 are
also “small” in the sense that they are smaller than a constant times δ. In general,
the answer is no. The vector x̃ is not guaranteed to be feasible, and therefore,
in principle, f(x̃) − fopt might be very small (and negative), and ‖[g(x̃)]+‖2 and
‖Ax̃ + b‖2 can be very large. However, we will show in the next theorem that if
ρ1 and ρ2 are chosen to be large enough, then under the setting of Theorem 3.59,
such a conclusion can be drawn.

Theorem 3.60.19 Let f, g1, g2, . . . , gm : E → (−∞,∞] be convex functions, X ⊆ E

a nonempty convex set, A ∈ R
p×n, and b ∈ R

p. Let fopt and qopt be the optimal
values of the primal and dual problems (3.56) and (3.63), respectively. Suppose that
fopt = qopt ∈ (−∞,∞) and that the optimal set of the dual problem is nonempty.
Let (y∗, z∗) be an optimal solution of the dual problem. Assume that x̃ ∈ X satisfies

f(x̃)− fopt + ρ1‖[g(x̃)]+‖2 + ρ2‖Ax̃+ b‖2 ≤ δ, (3.68)

19Theorem 3.60 is a slight extension of Lemma 6 from Lan [78].
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3.6. Lipschitz Continuity and Boundedness of Subgradients 71

where δ > 0 and ρ1, ρ2 are constants satisfying ρ1 ≥ 2‖y∗‖2, ρ2 ≥ 2‖z∗‖2. Then

f(x̃)− fopt ≤ δ,

‖[g(x̃)]+‖2 ≤ 2

ρ1
δ,

‖Ax̃+ b‖2 ≤ 2

ρ2
δ.

Proof. The inequality f(x̃) − fopt ≤ δ trivially follows from (3.68) and the fact
that the expressions ρ1‖[g(x̃)]+‖2 and ρ2‖Ax̃+ b‖2 are nonnegative.

Define the function

v(u, t) = min
x∈X

{f(x) : g(x) ≤ u,Ax+ b = t}.

Since (y∗, z∗) is an optimal solution of the dual problem, it follows by Theorem 3.59
that (−y∗,−z∗) ∈ ∂v(0,0). Therefore, for any (u, t) ∈ dom(v),

v(u, t)− v(0,0) ≥ 〈−y∗,u〉+ 〈−z∗, t〉. (3.69)

Plugging u = ũ ≡ [g(x̃)]+ and t = t̃ ≡ Ax̃+b into (3.69), while using the inequality
v(ũ, t̃) ≤ f(x̃) and the equality v(0,0) = fopt, we obtain

(ρ1 − ‖y∗‖2)‖ũ‖2 + (ρ2 − ‖z∗‖2)‖t̃‖2 = −‖y∗‖2‖ũ‖2 − ‖z∗‖2‖t̃‖2 + ρ1‖ũ‖2 + ρ2‖t̃‖2
≤ 〈−y∗, ũ〉+ 〈−z∗, t̃〉+ ρ1‖ũ‖2 + ρ2‖t̃‖2
≤ v(ũ, t̃)− v(0,0) + ρ1‖ũ‖2 + ρ2‖t̃‖2
≤ f(x̃)− fopt + ρ1‖ũ‖2 + ρ2‖t̃‖2
≤ δ.

Therefore, since both expressions (ρ1 − ‖y∗‖2)‖ũ‖2 and (ρ2 − ‖z∗‖2)‖t̃‖2 are non-
negative, it follows that

(ρ1 − ‖y∗‖2)‖ũ‖2 ≤ δ,

(ρ2 − ‖z∗‖2)‖t̃‖2 ≤ δ,

and hence, using the assumptions that ρ1 ≥ 2‖y∗‖2 and ρ2 ≥ 2‖t∗‖2,

‖[g(x̃)]+‖2 = ‖ũ‖2 ≤ δ

ρ1 − ‖y∗‖2
≤ 2

ρ1
δ,

‖Ax̃+ b‖2 = ‖t̃‖2 ≤ δ

ρ2 − ‖z∗‖2
≤ 2

ρ2
δ.

3.6 Lipschitz Continuity and Boundedness of
Subgradients

This section considers an important relation between Lipschitz continuity of a con-
vex function and boundedness of its subgradients.

Theorem 3.61 (Lipschitz continuity and boundedness of the subdifferen-
tial sets). Let f : E → (−∞,∞] be a proper and convex function. Suppose that
X ⊆ int(domf). Consider the following two claims:
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72 Chapter 3. Subgradients

(i) |f(x)− f(y)| ≤ L‖x− y‖ for any x,y ∈ X.

(ii) ‖g‖∗ ≤ L for any g ∈ ∂f(x),x ∈ X.

Then

(a) the implication (ii) ⇒ (i) holds;

(b) if X is open, then (i) holds if and only if (ii) holds.

Proof. (a) Suppose that (ii) is satisfied and let x,y ∈ X . Let gx ∈ ∂f(x) and
gy ∈ ∂f(y). The existence of these subgradients is guaranteed by Theorem 3.14.
Then by the definitions of gx,gy and the generalized Cauchy–Schwarz inequality
(Lemma 1.4),

f(x)− f(y) ≤ 〈gx,x− y〉 ≤ ‖gx‖∗‖x− y‖ ≤ L‖x− y‖,
f(y)− f(x) ≤ 〈gy,y − x〉 ≤ ‖gy‖∗‖x− y‖ ≤ L‖x− y‖,

showing the validity of (i).
(b) The implication (ii) ⇒ (i) was already shown. Now assume that (i) is

satisfied. Take x ∈ X and g ∈ ∂f(x). We will show that ‖g‖∗ ≤ L. Define g† ∈ E

as a vector that satisfies ‖g†‖ = 1, 〈g†,g〉 = ‖g‖∗ (the existence of such a vector is
warranted by the definition of the dual norm). Take ε > 0 small enough such that
x+ εg† ∈ X . By the subgradient inequality we have

f(x+ εg†) ≥ f(x) + 〈g, εg†〉.

Thus,

ε‖g‖∗ = 〈g, εg†〉 ≤ f(x+ εg†)− f(x) ≤ L‖x+ εg† − x‖ = Lε,

showing that ‖g‖∗ ≤ L.

Recall that by Theorem 3.16, the subgradients of a given convex function f are
bounded over compact sets contained in int(dom(f)). Combining this with Theorem
3.61, we can conclude that convex functions are always Lipschitz continuous over
compact sets contained in the interior of their domain.

Corollary 3.62 (Lipschitz continuity of convex functions over compact
domains). Let f : E → (−∞,∞] be a proper and convex function. Suppose that
X ⊆ int(dom(f)) is compact. Then there exists L > 0 for which

|f(x)− f(y)| ≤ L‖x− y‖ for any x,y ∈ X.

3.7 Optimality Conditions

3.7.1 Fermat’s Optimality Condition

Subdifferential sets are extremely useful in characterizing minima points. Perhaps
the most basic optimality condition states that a point is a global minimum of a
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3.7. Optimality Conditions 73

proper extended real-valued convex function if and only if 0 belongs to the subdiffer-
ential set at the point. In a sense, this is a generalization of Fermat’s optimality
condition at points of differentiability (“∇f(x∗) = 0”). We will refer to this condi-
tion as Fermat’s optimality condition.

Theorem 3.63 (Fermat’s optimality condition). Let f : E → (−∞,∞] be a
proper convex function. Then

x∗ ∈ argmin{f(x) : x ∈ E} (3.70)

if and only if 0 ∈ ∂f(x∗).

Proof. Follows by the definition of the subgradient. Indeed, (3.70) is satisfied if
and only if

f(x) ≥ f(x∗) + 〈0,x− x∗〉 for any x ∈ dom(f),

which is the same as the inclusion 0 ∈ ∂f(x∗).

Example 3.64 (minimizing piecewise linear functions). Consider the prob-
lem

min
x∈Rn

[
f(x) ≡ max

i=1,2,...,m

{
aTi x+ bi

}]
, (3.71)

where ai ∈ Rn, bi ∈ R, i = 1, 2, . . . ,m. Denote

I(x) =
{
i : f(x) = aTi x+ bi

}
.

Then, by Example 3.53,

∂f(x) =

⎧⎨⎩ ∑
i∈I(x)

λiai :
∑
i∈I(x)

λi = 1, λj ≥ 0, j ∈ I(x)

⎫⎬⎭ .

Therefore, since by Fermat’s optimality condition x∗ is an optimal solution of (3.71)
if and only if 0 ∈ ∂f(x∗), it follows that x∗ is an optimal solution of problem (3.71)
if and only if there exists λ ∈ Δm such that

0 =

m∑
i=1

λiai and λj = 0 for any j /∈ I(x∗). (3.72)

We can rewrite this condition in a more compact way by denoting A ∈ Rm×n to
be the matrix whose rows are aT1 , a

T
2 , . . . , a

T
m. Then the optimality condition (3.72)

can be written as

∃λ ∈ Δm s.t. ATλ = 0 and λj(a
T
j x
∗ + bj − f(x∗)) = 0, j = 1, 2, . . . ,m.

Example 3.65 (medians). Suppose that we are given n different20 and ordered
numbers a1 < a2 < · · · < an. Denote A = {a1, a2, . . . , an} ⊆ R. The median of A
is a number β that satisfies

#{i : ai ≤ β} ≥ n

2
and #{i : ai ≥ β} ≥ n

2
.

20The assumption that these are different and ordered numbers is not essential and is made for
the sake of simplicity of exposition.
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74 Chapter 3. Subgradients

That is, a median of A is a number that satisfies that at least half of the numbers
in A are smaller or equal to it and that at least half are larger or equal. It is
not difficult to see that if A has an odd number of elements, then the median is
the middlemost number. For example, the median of {5, 8, 11, 60, 100} is 11. If
the number of elements in A is even, then there is no unique median. The set of
medians comprises all numbers between the two middle values. For example, if
A = {5, 8, 11, 20, 60, 100}, then the set of medians of A is the interval [11, 20]. In
general,

median(A) =

⎧⎪⎨⎪⎩ an+1
2
, n odd,

[an
2
, an

2 +1], n even.

From an optimization perspective, the set of possible medians is the optimal
solution set of the problem

min

{
f(x) ≡

n∑
i=1

|x− ai|
}
. (3.73)

To show this, denote fi(x) ≡ |x − ai|, so that f(x) = f1(x) + f2(x) + · · · + fn(x),
and note that for any i ∈ {1, 2, . . . , n},

∂fi(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, x > ai,

−1, x < ai,

[−1, 1], x = ai.

By the sum rule of subdifferential calculus (Theorem 3.40),

∂f(x) = ∂f1(x) + ∂f2(x) + · · ·+ ∂fn(x)

=

⎧⎪⎨⎪⎩ #{i : ai < x} −#{i : ai > x}, x /∈ A,

#{i : ai < x} −#{i : ai > x}+ [−1, 1], x ∈ A.

We can further elaborate and write

∂f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2i− n, x ∈ (ai, ai+1),

2i− 1− n+ [−1, 1], x = ai,

−n, x < a1,

n, x > an.

(3.74)

Let i ∈ {1, 2, . . . , n}. By (3.74), 0 ∈ ∂f(ai) if and only if |2i− 1− n| ≤ 1, which is
equivalent to n

2 ≤ i ≤ n
2 + 1 and 0 ∈ ∂f(x) for some x ∈ (ai, ai+1) if and only if

i = n
2 . We can thus conclude that if n is odd, then the only optimal point is an+1

2
,

and when n is even, the optimal set is the interval [an
2
, an

2
+1], establishing the fact

that the optimal set of (3.73) is exactly the set of medians.
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3.7. Optimality Conditions 75

Example 3.66 (Fermat–Weber problem). Given m different points in Rd, A =
{a1, a2, . . . , am}, and m positive weights ω1, ω2, . . . , ωm, the Fermat–Weber problem
is given by

(FW) min
x∈Rd

{
f(x) ≡

m∑
i=1

ωi‖x− ai‖2

}
.

The Fermat–Weber problem is actually a weighted multidimensional version of the
median problem (3.73) discussed in the previous example and is therefore also re-
ferred to in the literature as the geometric median problem. Let us write explic-
itly the optimality conditions for problem (FW). Denote fi(x) = ωigi(x), where
gi(x) ≡ ‖x− ai‖2. Then for any i ∈ {1, 2, . . . ,m}

∂fi(x) =

⎧⎪⎨⎪⎩ ωi
x−ai

‖x−ai‖2 , x 
= ai,

B‖·‖2 [0, ωi], x = ai,

where here we used Theorems 3.35 (“multiplication by a positive scalar”), the affine
transformation rule of subdifferential calculus (Theorem 3.43(b)), and Example
3.34, in which the subdifferential set of the l2-norm was computed. Obviously,
f =

∑m
i=1 fi, and hence, by the sum rule of subdifferential calculus (Theorem

3.4021), we obtain that

∂f(x) =

m∑
i=1

∂fi(x) =

⎧⎪⎨⎪⎩
∑m
i=1 ωi

x−ai

‖x−ai‖2 , x /∈ A,∑m
i=1,i=j ωi

x−ai

‖x−ai‖2 +B[0, ωj ], x = aj(j = 1, 2, . . . ,m).

Using Fermat’s optimality condition (Theorem 3.63), we can conclude that x∗ ∈ Rd

is an optimal solution of problem (FW) if and only if either

x∗ /∈ A and

m∑
i=1

ωi
x∗ − ai

‖x∗ − ai‖2
= 0

or for some j ∈ {1, 2, . . . ,m}

x∗ = aj and

∥∥∥∥∥∥
m∑

i=1,i=j
ωi

x∗ − ai
‖x∗ − ai‖2

∥∥∥∥∥∥
2

≤ ωj .

3.7.2 Convex Constrained Optimization

Consider the constrained optimization problem

min{f(x) : x ∈ C}, (3.75)

where f is an extended real-valued convex function and C ⊆ E is a convex set. Using
Fermat’s optimality condition (Theorem 3.63) and the convexity assumptions, it is
easy to write a necessary and sufficient optimality condition for problem (3.75) in
terms of the subdifferential set of f and the normal cone of C.

21or by Corollary 3.39
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76 Chapter 3. Subgradients

Theorem 3.67 (necessary and sufficient optimality conditions for convex
constrained optimization). Let f : E → (−∞,∞] be a proper and convex
function, and let C ⊆ E be a convex set for which ri(dom(f)) ∩ ri(C) 
= ∅. Then
x∗ ∈ C is an optimal solution of (3.75) if and only if

there exists g ∈ ∂f(x∗) for which − g ∈ NC(x
∗). (3.76)

Proof. Problem (3.75) can be rewritten as

min
x∈E

f(x) + δC(x).

Since ri(dom(f)) ∩ ri(C) 
= ∅, it follows by the sum rule of subdifferential calculus
(Theorem 3.40) that for any x ∈ C,

∂(f + δC)(x) = ∂f(x) + ∂δC(x).

By Example 3.5, ∂δC(x) = NC(x), and consequently for any x ∈ C,

∂(f + δC)(x) = ∂f(x) +NC(x).

Therefore, invoking Fermat’s optimality condition (Theorem 3.63), x∗ ∈ C is an
optimal solution of (3.75) if and only if 0 ∈ ∂f(x∗) +NC(x

∗), that is, if and only if

(−∂f(x∗)) ∩NC(x∗) 
= ∅,

which is the same as condition (3.76).

Using the definition of the normal cone, we can write the optimality condition
in a slightly more explicit manner.

Corollary 3.68 (necessary and sufficient optimality conditions for convex
constrained optimization—second version). Let f : E → (−∞,∞] be a proper
and convex function, and let C be a convex set satisfying ri(dom(f)) ∩ ri(C) 
= ∅.
Then x∗ ∈ C is an optimal solution of (3.75) if and only if

there exists g ∈ ∂f(x∗) for which 〈g,x− x∗〉 ≥ 0 for any x ∈ C. (3.77)

Condition (3.77) is not particularly explicit. We will show in the next example
how to write it in an explicit way for the case where C = Δn.

Example 3.69 (optimality conditions over the unit simplex). Suppose that
the assumptions in Corollary 3.68 hold and that C = Δn,E = Rn. Given x∗ ∈ Δn,
we will show that the condition

(I) gT (x− x∗) ≥ 0 for all x ∈ Δn

is satisfied if and only if the following condition is satisfied:

(II) there exist μ ∈ R such that gi

⎧⎪⎨⎪⎩ = μ, x∗i > 0,

≥ μ, x∗i = 0.
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3.7. Optimality Conditions 77

Assume first that (II) is satisfied. Then for any x ∈ Δn,

gT (x− x∗) =
n∑
i=1

gi(xi − x∗i )

=
∑
i:x∗

i>0

gi(xi − x∗i ) +
∑
i:x∗

i =0

gixi

≥
∑
i:x∗

i>0

μ(xi − x∗i ) + μ
∑
i:x∗

i=0

xi

= μ

n∑
i=1

xi − μ
∑
i:x∗

i>0

x∗i = μ− μ = 0,

proving that condition (I) is satisfied. To show the reverse direction, assume that
(I) is satisfied. Let i and j be two different indices for which x∗i > 0. Define the
vector x ∈ Δn as

xk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x∗k, k /∈ {i, j},

x∗i −
x∗
i

2 , k = i,

x∗j +
x∗
i

2 , k = j.

The inequality gT (x− x∗) ≥ 0 then amounts to

−x
∗
i

2
gi +

x∗i
2
gj ≥ 0,

which by the fact that x∗i > 0 implies that

gi ≤ gj . (3.78)

In particular, for any two indices i 
= j for which x∗i , x
∗
j > 0, the two inequalities

gi ≤ gj and gj ≤ gi hold, and hence gi = gj. Therefore, all the components of
g corresponding to positive components of x∗ have the same value, which we will
denote by μ. Let i be any index for which x∗i > 0. Then for any index j for which
x∗j = 0, the inequality (3.78) holds. Therefore, gj ≥ μ, and condition (II) is thus
established.

We summarize the discussion in Example 3.69 with the following corollary.

Corollary 3.70 (necessary and sufficient optimality conditions for convex
problems over the unit simplex). Let f : E → (−∞,∞] be a proper and convex
function. Suppose that ri(Δn) ∩ ri(dom(f)) 
= ∅. Then x∗ ∈ Δn is an optimal
solution of

min{f(x) : x ∈ Δn}
if and only if there exists g ∈ ∂f(x∗) and μ ∈ R for which

gi

⎧⎪⎨⎪⎩ = μ, x∗i > 0,

≥ μ, x∗i = 0.
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78 Chapter 3. Subgradients

The following example illustrates one instance in which the optimal solution
of a convex problem over the unit simplex can be found using Corollary 3.70.

Example 3.71. Consider the problem

min
x

{
n∑
i=1

xi log xi −
n∑
i=1

yixi : x ∈ Δn

}
, (3.79)

where y ∈ Rn is a given vector. Problem (3.79) can be written as

min{f(x) : x ∈ Δn},

where f : Rn → (−∞,∞] is given by

f(x) =

⎧⎪⎨⎪⎩
∑n

i=1 xi log xi −
∑n

i=1 yixi, x ≥ 0,

∞ else.

Let us assume that there exists an optimal solution22 x∗ satisfying x∗ > 0. Then
under this assumption, by Corollary 3.70 and the fact that f is differentiable at any
positive vector, it follows that there exists μ ∈ R such that for any i, ∂f

∂xi
(x∗) = μ,

which is the same as log x∗i + 1− yi = μ. Therefore, for any i,

x∗i = eμ−1+yi = αeyi , i = 1, 2, . . . , n

where α = eμ−1. Since
∑n

i=1 x
∗
i = 1, it follows that α = 1∑

n
j=1 e

yj . Therefore,

x∗i =
eyi∑n
j=1 e

yj
, i = 1, 2, . . . , n.

This is indeed an optimal solution of problem (3.79) since it satisfies the conditions
of Corollary 3.70, which are (also) sufficient conditions for optimality.

3.7.3 The Nonconvex Composite Model

It is also possible to write a necessary optimality condition for nonconvex problems
in terms of subgradients. We will write such a condition for problems consisting
of minimizing a composite function f + g, where f possesses some differentiability
properties but is not assumed to be convex while g is convex but not assumed to
have any special differentiability properties.

Theorem 3.72 (optimality conditions for the composite problem). Let
f : E → (−∞,∞] be a proper function, and let g : E → (−∞,∞] be a proper convex
function such that dom(g) ⊆ int(dom(f)). Consider the problem

(P) min
x∈E

f(x) + g(x).

22It is not difficult to show a priori that the problem has a unique solution.
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3.7. Optimality Conditions 79

(a) (necessary condition) If x∗ ∈ dom(g) is a local optimal solution of (P) and
f is differentiable at x∗, then

− ∇f(x∗) ∈ ∂g(x∗). (3.80)

(b) (necessary and sufficient condition for convex problems) Suppose that
f is convex. If f is differentiable at x∗ ∈ dom(g), then x∗ is a global optimal
solution of (P) if and only if (3.80) is satisfied.

Proof. (a) Let y ∈ dom(g). Then by the convexity of dom(g), for any λ ∈ (0, 1),
the point xλ = (1 − λ)x∗ + λy is in dom(g), and by the local optimality of x∗, it
follows that, for small enough λ,

f(xλ) + g(xλ) ≥ f(x∗) + g(x∗).

That is,
f((1− λ)x∗ + λy) + g((1 − λ)x∗ + λy) ≥ f(x∗) + g(x∗).

Using the convexity of g, it follows that

f((1− λ)x∗ + λy) + (1− λ)g(x∗) + λg(y) ≥ f(x∗) + g(x∗),

which is the same as

f((1− λ)x∗ + λy) − f(x∗)

λ
≥ g(x∗)− g(y).

Taking λ→ 0+ in the last inequality yields

f ′(x∗;y − x∗) ≥ g(x∗)− g(y),

where we used the fact that since f is differentiable at x∗, its directional derivatives
exist. In fact, by Theorem 3.29, we have f ′(x∗;y − x∗) = 〈∇f(x∗),y − x∗〉, and
hence for any y ∈ dom(g),

g(y) ≥ g(x∗) + 〈−∇f(x∗),y − x∗〉,

showing that indeed −∇f(x∗) ∈ ∂g(x∗).
(b) Suppose in addition that f is convex. If x∗ is an optimal solution of (P),

then we already proved in part (a) that (3.80) is satisfied. Suppose now that (3.80)
is satisfied. Then for any y ∈ dom(g),

g(y) ≥ g(x∗) + 〈−∇f(x∗),y − x∗〉. (3.81)

By the convexity of f , for any y ∈ dom(g),

f(y) ≥ f(x∗) + 〈∇f(x∗),y − x∗〉. (3.82)

Adding (3.81) and (3.82), we obtain that

f(y) + g(y) ≥ f(x∗) + g(x∗)

for any y ∈ dom(g), meaning that x∗ is an optimal solution of (P).
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80 Chapter 3. Subgradients

The condition (3.80) is an important optimality condition, and we will refer
to it as the “stationarity” condition.

Definition 3.73 (stationarity). Let f : E → (−∞,∞] be proper and let g : E →
(−∞,∞] be a proper convex function such that dom(g) ⊆ int(dom(f)). Consider
the problem

(P) min
x∈E

f(x) + g(x).

A point x∗ in which f is differentiable is called a stationary point of (P) if

−∇f(x∗) ∈ ∂g(x∗).

Under the setting of Definition 3.73, x∗ is also called a stationary point of the
function f + g.

We have shown in Theorem 3.72 that stationarity is a necessary local opti-
mality condition for problem (P), and that if f is convex, then stationarity is a
necessary and sufficient global optimality condition. The case g = δC deserves a
separate discussion.

Example 3.74 (convex constrained nonconvex programming). When g =
δC for a nonempty convex set C ⊆ E, problem (P) becomes

min{f(x) : x ∈ C},

which is a problem consisting of minimizing a (possibly) nonconvex function over a
convex set. A point x∗ ∈ C in which f is differentiable is a stationary point of (P)
if and only if

− ∇f(x∗) ∈ ∂δC(x
∗) = NC(x

∗), (3.83)

where the equality is due to Example 3.5. By the definition of the normal cone,
condition (3.83) can be rewritten as

〈−∇f(x∗),x− x∗〉 ≤ 0 for any x ∈ C,

which is the same as

〈∇f(x∗),x− x∗〉 ≥ 0 for any x ∈ C.

Example 3.75. Consider the problem

min
x∈Rn

f(x) + λ‖x‖1, (3.84)

where f : Rn → (−∞,∞] is an extended real-valued function. A point x∗ ∈
int(dom(f)) in which f is differentiable is a stationary point of (3.84) if

−∇f(x∗) ∈ λ∂g(x∗),

where g(·) = ‖ · ‖1. Using the expression for the subdifferential set of the l1-norm
given in Example 3.41, we obtain that x∗ is a stationary point of problem (3.84) if
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3.7. Optimality Conditions 81

and only if

∂f(x∗)

∂xi

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
= −λ, x∗i > 0,

= λ, x∗i < 0,

∈ [−λ, λ], x∗i = 0.

(3.85)

By Theorem 3.72, condition (3.85) is a necessary condition for x∗ to be a local
minimum of problem (3.84). If f is also convex, then condition (3.85) is a nec-
essary and sufficient condition for x∗ to be a global optimal solution of problem
(3.84).

3.7.4 The KKT Conditions

In this section we will show that the KKT conditions for constrained convex prob-
lems can be directly deduced by Fermat’s optimality condition. For that, we begin
by establishing an equivalent reformulation of general inequality constrained prob-
lems.

Lemma 3.76. Let f, g1, g2, . . . , gm : E → R be real-valued functions. Consider the
problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m.
(3.86)

Assume that the minimum value of problem (3.86) is finite and equal to f̄ . Define
the function

F (x) ≡ max{f(x)− f̄ , g1(x), g2(x), . . . , gm(x)}. (3.87)

Then the optimal set of problem (3.86) is the same as the set of minimizers of F .

Proof. Let X∗ be the optimal set of problem (3.86). To establish the result, we
will show that F satisfies the following two properties:

(i) F (x) > 0 for any x /∈ X∗.

(ii) F (x) = 0 for any x ∈ X∗.

To prove property (i), let x /∈ X∗. There are two options. Either x is not feasible,
meaning that gi(x) > 0 for some i, and hence by its definition F (x) > 0. If x is
feasible but not optimal, then gi(x) ≤ 0 for all i = 1, 2, . . . ,m and f(x) > f̄ , which
also implies that F (x) > 0. To prove (ii), suppose that x ∈ X∗. Then gi(x) ≤ 0 for
all i = 1, 2, . . . ,m and f(x) = f̄ , implying that F (x) = 0.

Using Lemma 3.76, we can conclude that problem (3.86) reduces to

min
x∈E

F (x) (3.88)

in the sense that the optimal sets of the two problems are the same. Using this
equivalence, we can now establish under additional convexity assumptions the well-
known Fritz-John optimality conditions for problem (3.86).
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82 Chapter 3. Subgradients

Theorem 3.77 (Fritz-John necessary optimality conditions). Consider the
minimization problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,
(3.89)

where f, g1, g2, . . . , gm : E → R are real-valued convex functions. Let x∗ be an
optimal solution of (3.89). Then there exist λ0, λ1, . . . , λm ≥ 0, not all zeros, for
which

0 ∈ λ0∂f(x
∗) +

m∑
i=1

λi∂gi(x
∗) (3.90)

λigi(x
∗) = 0, i = 1, 2, . . . ,m. (3.91)

Proof. Let x∗ be an optimal solution of problem (3.89). Denote the optimal value
of problem (3.89) by f̄ = f(x∗). Using Lemma 3.76, it follows that x∗ is an optimal
solution of the problem

min
x∈E

{F (x) ≡ max{g0(x), g1(x), . . . , gm(x)},

where g0(x) ≡ f(x) − f̄ . Obviously, F (x∗) = 0. Since F is a maximum of convex
functions, it is convex, and hence, using Fermat’s optimality condition (Theorem
3.63),

0 ∈ ∂F (x∗). (3.92)

By the max rule of subdifferential calculus (Theorem 3.50),

∂F (x∗) = conv
(
(∪i∈I(x∗)∂gi(x

∗)
)
, (3.93)

where I(x∗) = {i ∈ {0, 1, . . . ,m} : gi(x
∗) = 0}. Combining (3.92) and (3.93), we

can deduce that there exists λi ≥ 0, i ∈ I(x∗), such that
∑
i∈I(x∗) λi = 1 for which

0 ∈
∑

i∈I(x∗)

λi∂gi(x
∗). (3.94)

Since g0(x
∗) = f(x∗) − f̄ = 0, it follows that 0 ∈ I(x∗), and hence (3.94) can be

rewritten as
0 ∈ λ0∂f(x

∗) +
∑

i∈I(x∗)\{0}
λi∂gi(x

∗).

Defining λi = 0 for any i ∈ {1, 2, . . . ,m} \ I(x∗), we conclude that conditions (3.90)
and (3.91) are satisfied. Finally, not all the λi’s are zeros since

∑
i∈I(x∗) λi = 1.

We will now establish the KKT conditions, which are the same as the Fritz-
John conditions, but with λ0 = 1. The necessity of these conditions requires the
following additional condition, which we refer to as Slater’s condition:

there exists x̄ ∈ E for which gi(x̄) < 0, i = 1, 2, . . . ,m. (3.95)
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3.7. Optimality Conditions 83

The sufficiency of the KKT conditions does not require any additional assumptions
(besides convexity) and is actually easily derived without using the result on the
Fritz-John conditions.

Theorem 3.78 (KKT conditions). Consider the minimization problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,
(3.96)

where f, g1, g2, . . . , gm : E → R are real-valued convex functions.

(a) Let x∗ be an optimal solution of (3.96), and assume that Slater’s condition
(3.95) is satisfied. Then there exist λ1, . . . , λm ≥ 0 for which

0 ∈ ∂f(x∗) +
m∑
i=1

λi∂gi(x
∗) (3.97)

λigi(x
∗) = 0, i = 1, 2, . . . ,m. (3.98)

(b) If x∗ ∈ E satisfies conditions (3.97) and (3.98) for some λ1, λ2, . . . , λm ≥ 0,
then it is an optimal solution of problem (3.96).

Proof. (a) By the Fritz-John conditions (Theorem 3.77) there exist λ̃0, λ̃1, . . . , λ̃m ≥
0, not all zeros, for which

0 ∈ λ̃0∂f(x
∗) +

m∑
i=1

λ̃i∂gi(x
∗), (3.99)

λ̃igi(x
∗) = 0, i = 1, 2, . . . ,m. (3.100)

We will show that λ̃0 
= 0. Assume by contradiction that λ̃0 = 0. Then, by (3.99),

0 ∈
m∑
i=1

λ̃i∂gi(x
∗);

that is, there exist ξi ∈ ∂gi(x
∗), i = 1, 2, . . . ,m, such that

m∑
i=1

λ̃iξi = 0. (3.101)

Let x̄ be a point satisfying Slater’s condition (3.95). By the subgradient inequality
employed on the pair of points x̄,x∗ w.r.t. the functions gi, i = 1, 2, . . . ,m, we have

gi(x
∗) + 〈ξi, x̄− x∗〉 ≤ gi(x̄), i = 1, 2, . . . ,m.

Multiplying the ith inequality by λ̃i ≥ 0 and summing over i = 1, 2, . . . ,m yields

m∑
i=1

λ̃igi(x
∗) +

〈
m∑
i=1

λ̃iξi, x̄− x∗

〉
≤

m∑
i=1

λ̃igi(x̄), i = 1, 2, . . . ,m.
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84 Chapter 3. Subgradients

Using (3.100) and (3.101), we obtain the inequality
∑m
i=1 λ̃igi(x̄) ≥ 0, which is

impossible since λ̃i ≥ 0 and gi(x̄) < 0 for any i, and not all the λ̃i’s are zeros.
Therefore, λ̃0 > 0, and we can thus divide both the relation (3.99) and the equalities

(3.100) by λ̃0 to obtain that (3.97) and (3.98) are satisfied with λi = λ̃i

λ̃0
, i =

1, 2, . . . ,m.
(b) Suppose then that x∗ satisfies (3.97) and (3.98) for some nonnegative

numbers λ1, λ2, . . . , λm. Let x̂ ∈ E be a feasible point of (3.96), meaning that
gi(x̂) ≤ 0, i = 1, 2, . . . ,m. We will show that f(x̂) ≥ f(x∗). Define the function

h(x) = f(x) +

m∑
i=1

λigi(x).

The function h is convex, and the condition (3.97) along with the sum rule of
subdifferential calculus (Theorem 3.40) yields the relation

0 ∈ ∂h(x∗),

which by Fermat’s optimality condition (Theorem 3.63) implies that x∗ is a mini-
mizer of h over E. Combining this fact with (3.98) implies that

f(x∗) = f(x∗) +
m∑
i=1

λigi(x
∗) = h(x∗) ≤ h(x̂) = f(x̂) +

m∑
i=1

λigi(x̂) ≤ f(x̂),

where the last inequality follows from the facts that λi ≥ 0 and gi(x̂) ≤ 0 for
i = 1, 2, . . . ,m. We have thus proven that x∗ is an optimal solution of (3.96).

3.8 Summary of Weak and Strong Subgradient
Calculus Results

This section contains a summary of most of the rules and results concerning the
computation of subdifferential sets (strong results), as well as rules for computing
specific subgradients in the subdifferential sets (weak results). Before that, we begin
by summarizing the rules of subdifferential calculus.

• Multiplication by a positive scalar

∂(αf)(x) = α∂f(x).

Assumptions: f : E→ (−∞,∞] proper, α > 0, x ∈ dom(f). [Theorem 3.35]

• Differentiability
f is differentiable at x if and only if ∂f(x) is a singleton, and in that case

∂f(x) = {∇f(x)}.
Assumptions: f : E→ (−∞,∞] proper convex, x ∈ int(dom(f)). [Theorem 3.33]

• Weak sum rule of subdifferential calculus∑m
i=1 ∂fi(x) ⊆ ∂(

∑m
i=1 fi)(x).

Assumptions: f1, f2, . . . , fm : E→ (−∞,∞] proper convex. [Corollary 3.38(a)]
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3.8. Summary of Weak and Strong Subgradient Calculus Results 85

• Sum rule of subdifferential calculus

∂(
∑m
i=1 fi)(x) =

∑m
i=1 ∂fi(x).

Assumptions: f1, f2, . . . , fm : E → (−∞,∞] proper convex, ∩m
i=1ri(dom(fi)) = ∅. [Theorem

3.40]

• Weak affine transformation rule of subdifferential calculus

AT (∂f(A(x) + b)) ⊆ ∂h(x) (h(x) ≡ f(A(x) + b)).

Assumptions: f, h : E→ (−∞,∞] proper convex, x ∈ dom(h). [Theorem 3.43(a)]

• Affine transformation rule of subdifferential calculus

∂h(x) = AT (∂f(A(x) + b)) (h(x) ≡ f(A(x) + b)).

Assumptions: f, h : E → (−∞,∞] proper convex, x ∈ int(dom(h)),A(x) + b ∈ int(dom(f)).
[Theorem 3.43(b)]

• Chain rule of subdifferential calculus

∂h(x) = g′(f(x))∂f(x) (h = g ◦ f).
Assumptions: f : E→ R convex, g : R→ R nondecreasing, differentiable and convex. [Theorem
3.47]

• Max rule of subdifferential calculus

∂(max(f1, f2, . . . , fm))(x) = conv
(
∪i∈I(x)∂fi(x)

)
,

where
I(x) = {i : fi(x) = max{f1(x), f2(x), . . . , fm(x)}}.

Assumptions: f1, f2, . . . , fm proper, convex, x ∈ ∩m
i=1int(dom(fi)). [Theorem 3.50]

• Weak max rule of subdifferential calculus

conv
(
∪i∈I(x)∂fi(x)

)
⊆ ∂(max

i∈I
fi)(x),

where
I(x) = {i ∈ I : fi(x) = max

i∈I
fi(x)}.

Assumptions: I = arbitrary index set. fi : E → (−∞,∞] (i ∈ I) proper, convex, x ∈
∩i∈Idom(fi). [Theorem 3.55]

The table below contains the main examples from the chapter related to weak
results of subgradients computations.

Function Weak result Setting Reference

−q = neg-
ative dual
function

−g(x0) ∈ ∂(−q)(λ0) q(λ) = min
x∈X

f(x)+λTg(x), f :

E → R, g : E → Rm, x0 =
a minimizer of f(x) + λT

0 g(x)
over X

Example 3.7

f(X) =
λmax(X)

vvT ∈ ∂f(X) f : Sn → R, v = normalized
maximum eigenvector of X ∈
Sn

Example 3.8

f(x) =
‖x‖1

sgn(x) ∈ ∂f(x) E = Rn Example 3.42

f(x) =
λmax(A0 +∑m

i=1 xiAi)

(ỹTAiỹ)
m
i=1 ∈ ∂f(x) ỹ = normalized maximum

eigenvector of A0+
∑m

i=1 xiAi

Example 3.56
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86 Chapter 3. Subgradients

The following table contains the main strong results of subdifferential sets
computations derived in this chapter.

f(x) ∂f(x) Assumptions Reference

‖x‖ B‖·‖∗ [0,1] x = 0 Example 3.3

‖x‖1

⎧⎨
⎩

∑
i∈I�=(x)

sgn(xi)ei +
∑

i∈I0(x)

[−ei, ei]

⎫⎬
⎭ E = Rn, I �=(x) =

{i : xi �= 0},
I0(x) = {i : xi =
0}.

Example 3.41

‖x‖2

⎧⎪⎨
⎪⎩
{

x
‖x‖2

}
, x �= 0,

B‖·‖2 [0, 1], x = 0.
E = Rn Example 3.34

‖x‖∞

⎧⎪⎪⎨
⎪⎪⎩
∑

i∈I(x)

λisgn(xi)ei :

∑
i∈I(x)

λi = 1

λi ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ E = Rn, I(x) =

{i : ‖x‖∞ = |xi|},
x �= 0

Example 3.52

max(x)

⎧⎨
⎩
∑

i∈I(x)

λiei :
∑

i∈I(x)

λi = 1, λi ≥ 0

⎫⎬
⎭ E = Rn, I(x) =

{i : max(x) = xi}
Example 3.51

max(x) Δn E = Rn, x = αe for
some α ∈ R

Example 3.51

δS(x) NS(x) ∅ �= S ⊆ E Example 3.5

δB[0,1](x)

⎧⎪⎨
⎪⎩

{y ∈ E∗ : ‖y‖∗ ≤ 〈y,x〉} , ‖x‖ ≤ 1,

∅, ‖x‖ > 1.
Example 3.6

‖Ax+ b‖1
∑

i∈I �=(x)

sgn(aT
i x + bi)ai +

∑
i∈I0(x)

[−ai, ai] E = Rn, A ∈
Rm×n, b ∈ Rm,
I �=(x) = {i : aT

i x+
bi �= 0}, I0(x) =
{i : aT

i x+ bi = 0}

Example 3.44

‖Ax+ b‖2

⎧⎪⎨
⎪⎩

AT (Ax+b)
‖Ax+b‖2 , Ax+ b �= 0,

ATB‖·‖2 [0,1], Ax+ b = 0.
E = Rn, A ∈
Rm×n, b ∈ Rm

Example 3.45

‖Ax+b‖∞

⎧⎨
⎩
∑
i∈Ix

λisgn(a
T
i x+ bi)ai :

∑
i∈Ix

λi = 1

λi ≥ 0

⎫⎬
⎭ E = Rn, A ∈

Rm×n, b ∈ Rm,
Ix = {i : ‖Ax +
b‖∞ = |aT

i x+bi|},
Ax+ b �= 0

Example 3.54

‖Ax+b‖∞ ATB‖·‖1 [0, 1] same as above but
with Ax+ b = 0

Example 3.54

maxi{aT
i x+

b}

⎧⎨
⎩
∑

i∈I(x)

λiai :
∑

i∈I(x)

λi = 1, λi ≥ 0

⎫⎬
⎭ E = Rn,ai ∈ Rn,

bi ∈ R, I(x) = {i :
f(x) = aT

i x+ bi}

Example 3.53

1
2
d2C(x) {x− PC(x)} C = nonempty

closed and convex,
E = Euclidean

Example 3.31

dC(x)

⎧⎪⎨
⎪⎩
{

x−PC (x)
dC(x)

}
, x /∈ C,

NC(x) ∩ B[0, 1] x ∈ C.
C = nonempty
closed and convex,
E = Euclidean

Example 3.49
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Chapter 4

Conjugate Functions

4.1 Definition and Basic Properties

We begin with the definition of the conjugate function.

Definition 4.1 (conjugate functions). Let f : E → [−∞,∞] be an extended
real-valued function. The function f∗ : E∗ → [−∞,∞], defined by

f∗(y) = max
x∈E

{〈y,x〉 − f(x)} , y ∈ E
∗,

is called the conjugate function of f .

Example 4.2 (conjugate of indicator functions). Let f = δC , where C ⊆ E

is nonempty. Then for any y ∈ E
∗

f∗(y) = max
x∈E

{〈y,x〉 − δC(x)} = max
x∈C

〈y,x〉 = σC(y).

That is, the conjugate of the indicator function is the support function of the same
underlying set:

δ∗C = σC .

Two fundamental properties of conjugate functions are their convexity and
closedness (regardless of whether the original function is closed or convex).

Theorem 4.3 (convexity and closedness of conjugate functions). Let f :
E → (−∞,∞] be an extended real-valued function. Then the conjugate function f∗

is closed and convex.

Proof. Note that f∗ is the pointwise maximum of affine functions, which are convex
and closed, and thus, invoking Theorems 2.16(c) and 2.7(c), it follows that f∗ is
closed and convex.

87
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88 Chapter 4. Conjugate Functions

Example 4.4 (conjugate of 1
2
‖ · ‖2 + δC). Suppose that E is Euclidean and

that C ⊆ E is nonempty. Define f(x) = 1
2‖x‖2 + δC(x). Then by Example 2.17

(specifically, (2.6)), it follows that

f∗(y) =
1

2
‖y‖2 − 1

2
d2C(y).

Note that while f is convex only if C is convex, the convexity of f∗ is guaranteed
regardless of whether C is convex or not.

The next result states that the conjugate function of a proper convex function
is also proper.

Theorem 4.5 (properness of conjugate functions). Let f : E → (−∞,∞] be
a proper convex function. Then f∗ is proper.

Proof. Since f is proper, it follows that there exists x̂ ∈ E such that f(x̂) < ∞.
By the definition of the conjugate function, for any y ∈ E

∗,

f∗(y) ≥ 〈y, x̂〉 − f(x̂),

and hence f∗(y) > −∞. What remains in order to establish the properness of f∗

is to show that there exists g ∈ E∗ such that f∗(g) < ∞. By Corollary 3.19, there
exists x ∈ dom(f) such that ∂f(x) 
= ∅. Take g ∈ ∂f(x). Then by the definition of
the subgradient, for any z ∈ E,

f(z) ≥ f(x) + 〈g, z− x〉.

Hence,

f∗(g) = max
z∈E

{〈g, z〉 − f(z)} ≤ 〈g,x〉 − f(x) <∞,

concluding that f∗ is a proper function.

The following result, called Fenchel’s inequality, is a trivial implication of the
definition of conjugacy.

Theorem 4.6 (Fenchel’s inequality). Let f : E → (−∞,∞] be an extended
real-valued proper function. Then for any x ∈ E and y ∈ E∗,

f(x) + f∗(y) ≥ 〈y,x〉.

Proof. By the definition of the conjugate function we have that for any x ∈ E and
y ∈ E

∗,

f∗(y) ≥ 〈y,x〉 − f(x). (4.1)

Since f is proper, it follows that f(x), f∗(y) > −∞. We can thus add f(x) to both
sides of (4.1) and obtain the desired result.
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4.2. The Biconjugate 89

4.2 The Biconjugate
The conjugacy operation can be invoked twice resulting in the biconjugate opera-
tion. Specifically, for a function f : E → [−∞,∞] we define (recall that in this book
E and E

∗∗ are considered to be identical)

f∗∗(x) = max
y∈E∗

{〈x,y〉 − f∗(y)} , x ∈ E.

The biconjugate function is always a lower bound on the original function, as the
following result states.

Lemma 4.7 (f∗∗ ≤ f). Let f : E → [−∞,∞] be an extended real-valued function.
Then f(x) ≥ f∗∗(x) for any x ∈ E.

Proof. By the definition of the conjugate function we have for any x ∈ E and
y ∈ E∗,

f∗(y) ≥ 〈y,x〉 − f(x).

Thus,
f(x) ≥ 〈y,x〉 − f∗(y),

implying that
f(x) ≥ max

y∈E∗
{〈y,x〉 − f∗(y)} = f∗∗(x).

If we assume that f is proper closed and convex, then the biconjugate is not
just a lower bound on f—it is equal to f .

Theorem 4.8 (f = f∗∗ for proper closed convex functions). Let f : E →
(−∞,∞] be a proper closed and convex function. Then f∗∗ = f .

Proof. By Lemma 4.7, f∗∗ ≤ f . We thus need to show that f∗∗ ≥ f . Suppose
by contradiction that for some x ∈ E we have f∗∗(x) < f(x). This means that
(x, f∗∗(x)) /∈ epi(f) ⊆ E×R. We assume as usual that the product space V = E×R

is endowed with the inner product 〈(u, s), (v, t)〉V = 〈u,v〉 + st, where 〈·, ·〉 is the
inner product associated with E (see Section 1.9). Since f is proper closed and
convex, the set epi(f) is nonempty closed and convex, and hence, by the strict
separation theorem (Theorem 2.33), there exist a ∈ E∗, b, c1, c2 ∈ R such that

〈a, z〉 + bs ≤ c1 < c2 ≤ 〈a,x〉+ bf∗∗(x) for all (z, s) ∈ epi(f).

We can thus conclude that

〈a, z− x〉+ b(s− f∗∗(x)) ≤ c1 − c2 ≡ c < 0 for all (z, s) ∈ epi(f). (4.2)

The scalar b must be nonpositive, since otherwise, if it was positive, the inequality
would have been violated by taking a fixed z and large enough s. We will now
consider two cases.

• If b < 0, then dividing (4.2) by −b and taking y = −a
b , we get

〈y, z − x〉 − s+ f∗∗(x) ≤ c

−b < 0 for all (z, s) ∈ epi(f).
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90 Chapter 4. Conjugate Functions

In particular, taking s = f(z) (which is possible since (z, f(z)) ∈ epi(f)), we
obtain that

〈y, z〉 − f(z)− 〈y,x〉 + f∗∗(x) ≤ c

−b < 0 for all z ∈ E.

Taking the maximum over z yields the inequality

f∗(y) − 〈y,x〉 + f∗∗(x) ≤ c

−b < 0,

which is a contradiction of Fenchel’s inequality (Theorem 4.6).

• If b = 0, then take some ŷ ∈ dom(f∗). Such a vector exists since f∗ is proper
by the properness and convexity of f (Theorem 4.5). Let ε > 0 and define

â = a+ εŷ and b̂ = −ε. Then for any z ∈ dom(f),

〈â, z− x〉+ b̂(f(z)− f∗∗(x)) = 〈a, z− x〉+ ε[〈ŷ, z〉 − f(z) + f∗∗(x)− 〈ŷ,x〉]
≤ c+ ε[〈ŷ, z〉 − f(z) + f∗∗(x)− 〈ŷ,x〉]
≤ c+ ε[f∗(ŷ)− 〈ŷ,x〉+ f∗∗(x)],

where the first inequality is due to (4.2) and the second by the definition of
f∗(ŷ) as the maximum of 〈ŷ, z〉 − f(z) over all possible z ∈ E. We thus
obtained the inequality

〈â, z− x〉+ b̂(f(z)− f∗∗(x)) ≤ ĉ, (4.3)

where ĉ ≡ c + ε[f∗(ŷ) − 〈ŷ,x〉 + f∗∗(x)]. Since c < 0, we can pick ε > 0
small enough to ensure that ĉ < 0. At this point we employ exactly the same
argument used in the first case. Dividing (4.3) by −b̂ and denoting ỹ = − 1

b̂
â

yields the inequality

〈ỹ, z〉 − f(z)− 〈ỹ,x〉+ f∗∗(x) ≤ − ĉ
b̂
< 0 for any z ∈ dom(f).

Taking the maximum over z results in

f∗(ỹ)− 〈ỹ,x〉+ f∗∗(x) ≤ ĉ

−b̂
< 0,

which, again, is a contradiction of Fenchel’s inequality.

Example 4.9 (conjugate of support functions). We will now show how to
exploit Theorem 4.8 in order to compute the conjugate of support functions. Sup-
pose that C ⊆ E is a given nonempty set. Since cl(conv(C)) is closed and convex,
it follows that δcl(conv(C)) is closed and convex, and hence, by Example 4.2 and
Theorem 4.8,

σ∗cl(conv(C)) = (δ∗cl(conv(C)))
∗ = δ∗∗cl(conv(C)) = δcl(conv(C)). (4.4)

Finally, by Lemma 2.35,
σC = σcl(conv(C)),

which, combined with (4.4), establishes the result

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



4.3. Conjugate Calculus Rules 91

σ∗C = δcl(conv(C)).

Example 4.10 (conjugate of the max function). Consider the function f :
R
n → R given by f(x) = max{x1, x2, . . . , xn}. Note that the following elementary

identity holds for any x ∈ Rn:

max{x1, x2, . . . , xn} = max
y∈Δn

yTx = σΔn(x).

Therefore, using Example 4.9, we can conclude, exploiting the convexity and closed-
ness of Δn, that

f∗ = δΔn .

Example 4.11 (conjugate of 1
2
‖ · ‖2 − d2

C). Let E be Euclidean, and let C ⊆ E

be a nonempty closed and convex set. Define f(x) = 1
2‖x‖2−

1
2d

2
C(x). By Example

4.4, f = g∗, where g(y) = 1
2‖y‖2 + δC(y). By the nonemptiness, closedness, and

convexity of C, it follows that g is proper closed and convex, and hence, by Theorem
4.8,

f∗(y) = g∗∗(y) = g(y) =
1

2
‖y‖2 + δC(y).

4.3 Conjugate Calculus Rules

In this section we present the basic calculus rules for computing conjugate functions.
We begin with a very simple rule for separable functions.
Theorem 4.12 (conjugate of separable functions). Let g : E1×E2×· · ·×Ep →
(−∞,∞] be given by g(x1,x2, . . . ,xp) =

∑p
i=1 fi(xi), where fi : Ei → (−∞,∞] is

a proper function for any i = 1, 2, . . . , p. Then

g∗(y1,y2, . . . ,yp) =

p∑
i=1

f∗i (yi) for any yi ∈ E
∗
i , i = 1, 2, . . . , p.

Proof. For any (y1,y2, . . . ,yp) ∈ E
∗
1 × E

∗
2 × · · · × E

∗
p, it holds that

g∗(y1,y2, . . . ,yp) = max
x1,x2,...,xp

{〈(y1,y2, . . . ,yp), (x1,x2, . . . ,xp)〉 − g(x1,x2, . . . ,xp)}

= max
x1,x2,...,xp

{
p∑
i=1

〈yi,xi〉 −
p∑
i=1

fi(xi)

}

=

p∑
i=1

max
xi

{〈yi,xi〉 − fi(xi)}

=

p∑
i=1

f∗i (yi).
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92 Chapter 4. Conjugate Functions

The next result shows how the conjugate operation is affected by invertible
affine change of variables as well as by addition of an affine function.

Theorem 4.13 (conjugate of f(A(x− a))+ 〈b, x〉+ c). Let f : E → (−∞,∞]
be an extended real-valued function, and let A : V → E be an invertible linear
transformation, a ∈ V, b ∈ V∗, and c ∈ R. Then the conjugate of the function
g(x) = f(A(x − a)) + 〈b,x〉+ c is given by

g∗(y) = f∗
(
(AT )−1(y − b)

)
+ 〈a,y〉 − c− 〈a,b〉, y ∈ V

∗.

Proof. Making the change of variables z = A(x − a), which is equivalent to
x = A−1(z) + a, we can write for any y ∈ V∗,

g∗(y) = max
x

{〈y,x〉 − g(x)}

= max
x

{〈y,x〉 − f(A(x − a))− 〈b,x〉 − c}

= max
z

{〈y,A−1(z) + a〉 − f(z)− 〈b,A−1(z) + a〉 − c}

= max
z

{
〈y − b,A−1(z)〉 − f(z) + 〈a,y〉 − 〈a,b〉 − c

}
= max

z

{
〈(A−1)T (y − b), z〉 − f(z) + 〈a,y〉 − 〈a,b〉 − c

}
= f∗

(
(AT )−1(y − b)

)
+ 〈a,y〉 − c− 〈a,b〉,

where in the last equality we also used the fact that (A−1)T = (AT )−1.

Theorem 4.14 (conjugate of αf(·) and αf(·/α)). Let f : E → (−∞,∞] be
an extended real-valued function and let α ∈ R++.

(a) The conjugate of the function g(x) = αf(x) is given by

g∗(y) = αf∗
(y
α

)
, y ∈ E

∗.

(b) The conjugate of the function h(x) = αf
(
x
α

)
is given by

h∗(y) = αf∗(y), y ∈ E
∗.

Proof. For any y ∈ E∗,

g∗(y) = max
x

{〈y,x〉 − g(x)}

= max
x

{〈y,x〉 − αf(x)}

= αmax
x

{〈y
α
,x
〉
− f(x)

}
= αf∗

(y
α

)
,
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4.4. Examples 93

proving (a). The proof of (b) follows by the following chain of equalities:

h∗(y) = max
x

{〈y,x〉 − h(x)}

= max
x

{
〈y,x〉 − αf

(x
α

)}
= αmax

x

{〈
y,

x

α

〉
− f

(x
α

)}
z← x

α= αmax
z

{〈y, z〉 − f (z)}

= αf∗(y).

The table below summarizes the four calculus rules discussed in this section.

g(x) g∗(y) Reference

∑m
i=1 fi(xi)

∑m
i=1 f

∗
i (yi) Theorem 4.12

αf(x) (α > 0) αf∗(y/α) Theorem 4.14

αf(x/α) (α > 0) αf∗(y) Theorem 4.14

f(A(x − a)) + 〈b,x〉+ c f∗
(
(AT )−1(y − b)

)
+〈a,y〉−c−〈a,b〉 Theorem 4.13

4.4 Examples
In this section we compute the conjugate functions of several fundamental convex
functions. The first examples are one-dimensional, while the rest are multidimen-
sional.

4.4.1 Exponent

Let f : R → R be given by f(x) = ex. Then for any y ∈ R,

f∗(y) = max
x

{xy − ex} . (4.5)

If y < 0, then the maximum value of the above problem is ∞ (easily seen by taking
x → −∞). If y = 0, then obviously the maximal value (which is not attained)
is 0. If y > 0, the unique maximizer of (4.5) is x = x̃ ≡ log y. Consequently,
f∗(y) = x̃y − ex̃ = y log y − y for any y > 0. Using the convention 0 log 0 ≡ 0, we
can finally deduce that

f∗(y) =

⎧⎪⎨⎪⎩ y log y − y, y ≥ 0,

∞ else.

4.4.2 Negative Log

Let f : R → (−∞,∞] be given by

f(x) =

⎧⎪⎨⎪⎩ − log(x), x > 0,

∞, x ≤ 0.
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94 Chapter 4. Conjugate Functions

For any y ∈ R,

f∗(y) = max
x>0

{xy − f(x)} = max
x>0

{xy + log(x)}. (4.6)

If y ≥ 0, then the maximum value of the above problem is ∞ (since the objective
function in (4.6) goes to ∞ as x → ∞). If y < 0, the unique optimal solution of
(4.6) is attained at x̃ = − 1

y , and hence for y < 0 we have f∗(y) = x̃y + log(x̃) =

−1− log(−y). To conclude,

f∗(y) =

⎧⎪⎨⎪⎩ −1− log(−y), y < 0,

∞, y ≥ 0.

4.4.3 Hinge Loss

Consider the one-dimensional function f : R → R given by

f(x) = max{1− x, 0}.

Then for any y ∈ R,

f∗(y) = max
x

[yx−max{1− x, 0}] = max
x

[min {(1 + y)x− 1, yx}] . (4.7)

The objective function in the above maximization problem can be rewritten as

min {(1 + y)x− 1, yx} =

⎧⎪⎨⎪⎩ (1 + y)x− 1, x < 1,

yx, x ≥ 1.

Thus, the objective function is a continuous piecewise linear function comprising
two pieces: a line with slope 1+ y over (−∞, 1] and a line with slope y over [1,∞).
Therefore, a maximizer exists if the slope of the left line is nonnegative (1 + y ≥ 0)
and the slope of the right line is nonpositive (y ≤ 0). Consequently, a maximizer
exists for the problem in (4.7) if and only if y ∈ [−1, 0], and in that case it is
attained at x = 1, with y being the corresponding optimal value. To summarize,

f∗(y) = y + δ[−1,0](y), y ∈ R.

4.4.4 1
p
| · |p (p > 1)

Let f : R → R be given by f(x) = 1
p |x|p, where p > 1. For any y ∈ R,

f∗(y) = max
x

{
xy − 1

p
|x|p

}
. (4.8)

Since the problem in (4.8) consists of maximizing a differentiable concave function
over R, its optimal solutions are the points x̃ in which the derivative vanishes:

y − sgn(x̃)|x̃|p−1 = 0.
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4.4. Examples 95

Therefore, sgn(x̃) = sgn(y) and |x̃|p−1 = |y|, implying that x̃ = sgn(y)|y| 1
p−1 . Thus,

f∗(y) = x̃y − 1

p
|x̃|p = |y|1+ 1

p−1 − 1

p
|y|

p
p−1 =

(
1− 1

p

)
|y|

p
p−1 =

1

q
|y|q,

where q is the positive number satisfying 1
p +

1
q = 1. To summarize,

f∗(y) =
1

q
|y|q, y ∈ R.

4.4.5 − (·)p
p

(0 < p < 1)

Let f : R → (−∞,∞] be given by

f(x) =

⎧⎪⎨⎪⎩ −xp

p , x ≥ 0,

∞, x < 0.

For any y ∈ R,

f∗(y) = max
x

{xy − f(x)} = max
x≥0

{
g(x) ≡ xy +

xp

p

}
.

When y ≥ 0, the value of the above problem is ∞ since g(x) → ∞ as x → ∞. If

y < 0, then the derivative of g(x) vanishes at x = x̃ ≡ (−y) 1
p−1 > 0, and since g is

concave, it follows that x̃ is a global maximizer of g. Therefore,

f∗(y) = x̃y +
x̃p

p
= −(−y)

p
p−1 +

1

p
(−y)

p
p−1 = − (−y)q

q
,

where q is the negative number for which 1
p +

1
q = 1. To summarize,

f∗(y) =

⎧⎪⎨⎪⎩ − (−y)q
q , y < 0,

∞, else.

4.4.6 Strictly Convex Quadratic Functions

Let f : Rn → R be given by f(x) = 1
2x

TAx + bTx + c, where A ∈ S
n
++, b ∈ R

n,
and c ∈ R. We use our convention that (unless otherwise stated) Rn is endowed
with the dot product, meaning that 〈x,y〉 = xTy. For any y ∈ Rn,

f∗(y) = max
x

{yTx− f(x)}

= max
x

{
yTx− 1

2
xTAx− bTx− c

}
= max

x

{
−1

2
xTAx− (b− y)

T
x− c

}
.

The maximum in the above problem is attained at x = A−1 (y − b), leading to the
following expression for the conjugate function:
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96 Chapter 4. Conjugate Functions

f∗(y) =
1

2
(y − b)TA−1(y − b)− c.

4.4.7 Convex Quadratic Functions

Let f : Rn → R be given by f(x) = 1
2x

TAx+ bTx+ c, where A ∈ Sn+, b ∈ Rn and
c ∈ R. The only difference between this example and the previous one is the fact
that here A is not necessarily positive definite but is assumed to be only positive
semidefinite. For any y ∈ R

n,

f∗(y) = max
x

{yTx− f(x)} = max
x

{
g(x) ≡ −1

2
xTAx+ (y − b)Tx− c

}
.

Since g is concave and differentiable over Rn, it follows that the maximizers of the
above problem are the points for which the gradient vanishes, namely, points x
satisfying

Ax = y − b. (4.9)

This system has a solution if and only if y ∈ b + Range(A), and in that case we
can choose one of the solutions to the system (4.9), for example, x̃ = A†(y − b),
where A† is the Moore–Penrose pseudoinverse of A. We can now compute f∗(y)
as follows:

f∗(y) = −1

2
x̃TAx̃− (b− y)T x̃− c

= −1

2
(y − b)A†AA†(y − b)− (b− y)TA†(y − b)− c

=
1

2
(y − b)TA†(y − b)− c,

where we used the fact that the Moore–Penrose pseudoinverse of a symmetric matrix
is symmetric, as well as the known identity A†AA† = A†. We are left with the
case where y − b /∈ Range(A). We will show that in this case f∗(y) = ∞. Indeed,
since Range(A) = Null(A)⊥, it follows that y−b /∈ Null(A)⊥, meaning that there
exists a vector v ∈ Null(A) such that (y − b)Tv > 0. Note that for any α ∈ R,

g(αv) = α(y − b)Tv − c,

and hence g(αv) → ∞ as α tends to ∞, establishing the fact that f∗(y) = ∞
whenever y /∈ b+Range(A). To conclude,

f∗(y) =

⎧⎪⎨⎪⎩
1
2 (y − b)TA†(y − b)− c, y ∈ b+Range(A),

∞ else.

4.4.8 Negative Entropy

Let f : Rn → (−∞,∞] be given by

f(x) =

⎧⎪⎨⎪⎩
∑n

i=1 xi log xi, x ≥ 0,

∞ else.
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4.4. Examples 97

Since the function is separable, it is enough to compute the conjugate of the scalar
function g defined by g(t) = t log t for t ≥ 0 and ∞ for t < 0. For any s ∈ R,

g∗(s) = max
t

{ts− g(t)} = max
t≥0

{ts− t log t}.

The maximum of the above problem is attained at t = es−1, and hence the conjugate
is given by

g∗(s) = ses−1 − (s− 1)es−1 = es−1.

Since f(x) =
∑n

i=1 g(xi), it follows by Theorem 4.12 that for any y ∈ R
n,

f∗(y) =
n∑
i=1

g∗(yi) =
n∑
i=1

eyi−1.

4.4.9 Negative Sum of Logs

Let f : Rn → (−∞,∞] be given by

f(x) =

⎧⎪⎨⎪⎩ −
∑n
i=1 log xi, x > 0,

∞ else.

Note that f(x) =
∑n
i=1 g(xi), where g(t) = − log t for t > 0 and ∞ for t ≤ 0.

Therefore, invoking Theorem 4.12,

f∗(x) =
n∑
i=1

g∗(xi).

By Section 4.4.2, g∗(y) = −1− log(−y) for y < 0 and ∞ otherwise. Therefore,

f∗(y) =

⎧⎪⎨⎪⎩ −n−
∑n
i=1 log(−yi), y < 0,

∞ else.

4.4.10 Negative Entropy over the Unit Simplex

Let f : Rn → (−∞,∞] be given by

f(x) =

⎧⎪⎨⎪⎩
∑n
i=1 xi log xi, x ∈ Δn,

∞ else.
(4.10)

For any y ∈ Rn,

f∗(y) = max

{
n∑
i=1

yixi −
n∑
i=1

xi log xi :

n∑
i=1

xi = 1, x1, x2, . . . , xn ≥ 0

}
.
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98 Chapter 4. Conjugate Functions

By Example 3.71, the optimal solution of the above maximization problem is

x∗i =
eyi∑n
j=1 e

yj
, i = 1, 2, . . . , n,

with a corresponding optimal value of

f∗(y) =
n∑
i=1

yix
∗
i −

n∑
i=1

x∗i log x
∗
i = log

⎛⎝ n∑
j=1

eyj

⎞⎠ .

That is, the conjugate of the negative entropy is the log-sum-exp function.

4.4.11 log-sum-exp

Let g : Rn → R be given by

g(x) = log

⎛⎝ n∑
j=1

exj

⎞⎠ .

By Section 4.4.10, g = f∗, where f is the negative entropy over the unit simplex
given by (4.10). Since f is proper closed and convex, it follows by Theorem 4.8 that
f∗∗ = f , and hence

g∗ = f∗∗ = f,

meaning that

g∗(y) =

⎧⎪⎨⎪⎩
∑n

i=1 yi log yi, y ∈ Δn,

∞ else.

4.4.12 Norms

Let f : E → R be given by f(x) = ‖x‖. Then, by Example 2.31,

f = σB‖·‖∗ [0,1],

where we used the fact that the bidual norm ‖ · ‖∗∗ is identical to the norm ‖ · ‖.
Hence, by Example 4.9,

f∗ = δcl(conv(B‖·‖∗ [0,1])),

but since B‖·‖∗ [0, 1] is closed and convex, cl(conv(B‖·‖∗ [0, 1])) = B‖·‖∗ [0, 1], and
therefore for any y ∈ E∗,

f∗(y) = δB‖·‖∗ [0,1](y) =

⎧⎪⎨⎪⎩ 0, ‖y‖∗ ≤ 1,

∞ else.
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4.4. Examples 99

4.4.13 Ball-Pen

Let f : E → (−∞,∞] be given by

f(x) =

⎧⎪⎨⎪⎩ −
√
1− ‖x‖2, ‖x‖ ≤ 1,

∞ else.

To compute the conjugate function, we begin by rewriting it in a double maximiza-
tion form:

f∗(y) = max
x

{
〈y,x〉 +

√
1− ‖x‖2 : ‖x‖ ≤ 1

}
= max

α∈[0,1]
max

x:‖x‖=α

{
〈y,x〉 +

√
1− α2

}
.

By the definition of the dual norm, the optimal value of the inner maximization
problem is α‖y‖∗ +

√
1− α2, and we can therefore write, for any y ∈ E

∗,

f∗(y) = max
α∈[0,1]

{
g(α) ≡ α‖y‖∗ +

√
1− α2

}
. (4.11)

It is easy to see that the maximizer of g over [0, 1] is

α̃ =
‖y‖∗√
‖y‖2∗ + 1

.

Plugging α = α̃ into (4.11), we finally obtain that for any y ∈ E
∗,

f∗(y) =
√

‖y‖2∗ + 1.

It is also possible to generalize the result to functions of the form

fα(x) =

⎧⎪⎨⎪⎩ −
√
α2 − ‖x‖2, ‖x‖ ≤ α,

∞ else,

where α ∈ R++. In this notation, f = f1. To compute f∗α, note that fα(x) =
αf
(
x
α

)
, and hence by Theorem 4.14(b) it follows that for any y ∈ E∗,

f∗α(y) = αf∗(y) = α
√
1 + ‖y‖2∗.

4.4.14
√
α2 + ‖ · ‖2

Consider the function gα : E → R given by gα(x) =
√
α2 + ‖x‖2, where α > 0.

Then gα(x) = αg
(
x
α

)
, where g(x) =

√
1 + ‖x‖2. By Section 4.4.13, it follows that

g = f∗, where f is given by

f(y) =

⎧⎪⎨⎪⎩ −
√
1− ‖y‖2∗, ‖y‖∗ ≤ 1,

∞ else.
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100 Chapter 4. Conjugate Functions

Since f is proper closed and convex, it follows by Theorem 4.8 that

g∗ = f∗∗ = f.

Finally, invoking Theorem 4.14(b), we conclude that for any y ∈ E∗,

g∗α(y) = αg∗(y) = αf(y) =

⎧⎪⎨⎪⎩ −α
√
1− ‖y‖2∗, ‖y‖∗ ≤ 1,

∞ else.

4.4.15 Squared Norm

Let f : E → R be given by f(x) = 1
2‖x‖2, where ‖·‖ is the norm associated with the

space E. For any y ∈ E∗, we can write f∗(y) as the optimal value of the following
double maximization problem:

f∗(y) = max
x∈E

{
〈y,x〉 − 1

2
‖x‖2

}
= max

α≥0
max

x:‖x‖=α

{
〈y,x〉 − 1

2
α2

}
.

Using the definition of the dual norm, it follows that

max
x∈E:‖x‖=α

〈y,x〉 = α‖y‖∗,

Hence,

f∗(y) = max
α≥0

{
α‖y‖∗ −

1

2
α2

}
=

1

2
‖y‖2∗.
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4.4. Examples 101

4.4.16 Summary of Conjugate Computations

The table below summarizes all the computations of conjugate functions described
in this chapter.

f(x) dom(f) f∗ Assumptions Reference

ex R y log y − y (dom(f∗) =
R+)

– Section 4.4.1

− log x R++ −1− log(−y) (dom(f∗)
= R−−)

– Section 4.4.2

max{1− x, 0} R y + δ[−1,0](y) – Section 4.4.3

1
p
|x|p R

1
q
|y|q p > 1, 1

p
+ 1

q
=

1
Section 4.4.4

−xp

p
R+ − (−y)q

q
(dom(f∗) =

R−−)

0 < p < 1, 1
p
+

1
q
= 1

Section 4.4.5

1
2
xTAx+

bTx+ c
Rn 1

2
(y − b)TA−1(y −

b)− c
A ∈ Sn++, b ∈
Rn, c ∈ R

Section 4.4.6

1
2
xTAx+

bTx+ c
Rn 1

2
(y−b)T A†(y−b)−c

(dom(f∗) =
b+ Range(A))

A ∈ Sn+, b ∈
Rn, c ∈ R

Section 4.4.7

∑n
i=1 xi log xi Rn

+

∑n
i=1 e

yi−1 – Section 4.4.8

∑n
i=1 xi log xi Δn log

(∑n
i=1 e

yi
)

– Section 4.4.10

−
∑n

i=1 log xi Rn
++ −n−

∑n
i=1 log(−yi)

(dom(f∗) = Rn
−−)

– Section 4.4.9

log
(∑n

i=1 e
xi
)

Rn
∑n

i=1 yi log yi
(dom(f∗) = Δn)

– Section 4.4.11

maxi{xi} Rn δΔn (y) – Example 4.10

δC(x) C σC(y) ∅ �= C ⊆ E Example 4.2

σC(x) dom(σC ) δcl(conv(C))(y) ∅ �= C ⊆ E Example 4.9

‖x‖ E δB‖·‖∗ [0,1](y) – Section 4.4.12

−
√
α2 − ‖x‖2 B[0, α] α

√
‖y‖2∗ + 1 α > 0 Section 4.4.13

√
α2 + ‖x‖2 E −α

√
1− ‖y‖2∗

(domf∗ = B‖·‖∗ [0,1])
α > 0 Section 4.4.14

1
2
‖x‖2 E

1
2
‖y‖2∗ – Section 4.4.15

1
2
‖x‖2 + δC(x) C 1

2
‖y‖2 − 1

2
d2C(y) ∅ �= C ⊆ E, E

Euclidean
Example 4.4

1
2
‖x‖2 −
1
2
d2C(x)

E
1
2
‖y‖2 + δC(y) ∅ �= C ⊆ E

closed convex.
E Euclidean

Example 4.11
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102 Chapter 4. Conjugate Functions

4.4.17 Fenchel’s Duality Theorem

Conjugate functions naturally appear in dual problems most prominently in the
celebrated Fenchel’s duality theorem, which we now recall. Consider the problem

(P) min
x∈E

f(x) + g(x).

We begin by rewriting the problem as

min
x,z∈E

{f(x) + g(z) : x = z}

and then constructing the Lagrangian

L(x, z;y) = f(x) + g(z) + 〈y, z− x〉 = − [〈y,x〉 − f(x)]− [〈−y, z〉 − g(z)] .

The dual objective function is computed by minimizing the Lagrangian w.r.t. the
primal variables x, z:

q(y) = min
x,z

L(x, z;y) = −f∗(y)− g∗(−y).

We thus obtain the following dual problem, which is also called Fenchel’s dual :

(D) max
y∈E∗

{−f∗(y) − g∗(−y)}.

Fenchel’s duality theorem, which we recall below, provides conditions under which
strong duality holds for the pair of problems (P) and (D).

Theorem 4.15 (Fenchel’s duality theorem [108, Theorem 31.1]). Let f, g :
E → (−∞,∞] be proper convex functions. If ri(dom(f)) ∩ ri(dom(g)) 
= ∅, then

min
x∈E

{f(x) + g(x)} = max
y∈E∗

{−f∗(y) − g∗(−y)},

and the maximum in the right-hand problem is attained whenever it is finite.

4.5 Infimal Convolution and Conjugacy

We will now show that in some sense the operations of addition and infimal convo-
lution are dual to each other under the conjugacy operation. The first result holds
under the very mild condition of properness of the functions.

Theorem 4.16 (conjugate of infimal convolution). For two proper functions
h1, h2 : E → (−∞,∞] it holds that

(h1�h2)∗ = h∗1 + h∗2.
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4.5. Infimal Convolution and Conjugacy 103

Proof. For every y ∈ E∗ one has

(h1�h2)∗(y) = max
x∈E

{〈y,x〉 − (h1�h2)(x)}

= max
x∈E

{〈y,x〉 −min
u∈E

{h1(u) + h2(x − u)}}

= max
x∈E

max
u∈E

{〈y,x〉 − h1(u)− h2(x− u)}

= max
x∈E

max
u∈E

{〈y,x− u〉+ 〈y,u〉 − h1(u)− h2(x− u)}

= max
u∈E

max
x∈E

{〈y,x− u〉+ 〈y,u〉 − h1(u)− h2(x− u)}

= max
u∈E

{h∗2(y) + 〈y,u〉 − h1(u)}

= h∗1(y) + h∗2(y).

The second “direction” is a much deeper result requiring additional assump-
tions like convexity of the functions under consideration.

Theorem 4.17 (conjugate of sum). Let h1 : E → (−∞,∞] be a proper convex
function and h2 : E → R be a real-valued convex function. Then

(h1 + h2)
∗ = h∗1�h∗2.

Proof. For any y ∈ E∗,

(h1 + h2)
∗(y) = max

x∈E
{〈y,x〉 − h1(x)− h2(x)}

= −min
x∈E

{h1(x) + h2(x) − 〈y,x〉}

= −min
x∈E

{h1(x) + g(x)} , (4.12)

where g(x) ≡ h2(x) − 〈y,x〉. Note that

ri(dom(h1)) ∩ ri(dom(g)) = ri(dom(h1)) ∩ E = ri(dom(h1)) 
= ∅,

and we can thus employ Fenchel’s duality theorem (Theorem 4.15) and obtain the
following equality:

min
x∈E

{h1(x) + g(x)} = max
z∈E∗

{−h∗1(z) − g∗(−z)} = max
z∈E∗

{−h∗1(z)− h∗2(y − z)} .
(4.13)

Combining (4.12) and (4.13), we finally obtain that for any y ∈ E∗,

(h1 + h2)
∗(y) = min

z∈E∗
{h∗1(z) + h∗2(y − z)} = (h∗1�h∗2)(y),

establishing the desired result.

Corollary 4.18. Let h1 : E → (−∞,∞] be a proper closed convex function and
h2 : E → R be a real-valued convex function. Then

h1 + h2 = (h∗1�h∗2)∗.
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104 Chapter 4. Conjugate Functions

Proof. The function h1 + h2 is obviously proper and is closed by the closedness of
h1, h2 (Theorem 2.7(b)). Therefore, by Theorem 4.8, (h1 + h2)

∗∗ = h1 + h2, which,
combined with Theorem 4.17, yields

h1 + h2 = (h1 + h2)
∗∗ = [(h1 + h2)

∗]
∗
= (h∗1�h∗2)∗.

The next result shows a representation of the infimal convolution in terms of
the corresponding conjugate functions.

Theorem 4.19 (representation of the infimal convolution by conjugates).
Let h1 : E → (−∞,∞] be a proper convex function, and let h2 : E → R be a
real-valued convex function. Suppose that h1�h2 is a real-valued function. Then

h1�h2 = (h∗1 + h∗2)
∗. (4.14)

Proof. By Theorem 4.16,
(h1�h2)∗ = h∗1 + h∗2. (4.15)

Since h1 is proper and convex and h2 is real-valued and convex, it follows by The-
orem 2.19 that h1�h2 is convex. Since h1�h2 is real-valued, it is in particular
proper and closed. Therefore, by Theorem 4.8, (h1�h2)∗∗ = h1�h2. Hence, taking
the conjugate of both sides of (4.15), the identity (4.14) follows.

4.6 Subdifferentials of Conjugate Functions
The main result concerning the subdifferential of a conjugate function is the so-
called conjugate subgradient theorem.

Theorem 4.20 (conjugate subgradient theorem). Let f : E → (−∞,∞] be
proper and convex. The following two claims are equivalent for any x ∈ E,y ∈ E∗:

(i) 〈x,y〉 = f(x) + f∗(y).

(ii) y ∈ ∂f(x).

If in addition f is closed, then (i) and (ii) are equivalent to

(iii) x ∈ ∂f∗(y).

Proof. The relation y ∈ ∂f(x) holds if and only if

f(z) ≥ f(x) + 〈y, z − x〉 for all z ∈ E,

which is the same as

〈y,x〉 − f(x) ≥ 〈y, z〉 − f(z) for all z ∈ E. (4.16)

Taking the maximum over z, we obtain that (4.16) is the same as

〈y,x〉 − f(x) ≥ f∗(y),
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4.6. Subdifferentials of Conjugate Functions 105

which by Fenchel’s inequality (Theorem 4.6) is equivalent to the equality 〈x,y〉 =
f(x)+f∗(y).We have thus established the equivalence between (i) and (ii). Assume
now that in addition f is closed. Then by Theorem 4.8, f∗∗ = f , which in particular
implies that (i) is equivalent to

〈x,y〉 = g(y) + g∗(x),

where g = f∗. By the same equivalence that was already established between (i)
and (ii) (but here employed on g), we conclude that (i) is equivalent to x ∈ ∂g(y) =
∂f∗(y).

By the definition of the conjugate function, claim (i) in Theorem 4.20 can be
rewritten as

x ∈ argmaxx̃∈E {〈y, x̃〉 − f(x̃)} ,
and, when f is closed, also as

y ∈ argmaxỹ∈E∗ {〈x, ỹ〉 − f∗(ỹ)} .

Equipped with the above observation, we can conclude that the conjugate subgra-
dient theorem, in the case where f is closed, can also be equivalently formulated as
follows.

Corollary 4.21 (conjugate subgradient theorem—second formulation).
Let f : E → (−∞,∞] be a proper closed convex function. Then for any x ∈
E,y ∈ E∗,

∂f(x) = argmaxỹ∈E∗ {〈x, ỹ〉 − f∗(ỹ)}
and

∂f∗(y) = argmaxx̃∈E {〈y, x̃〉 − f(x̃)} .

In particular, we can also conclude that for any proper closed convex function
f ,

∂f(0) = argminy∈E∗f∗(y)

and
∂f∗(0) = argminx∈Ef(x).

Example 4.22. Let f : E → R be given by f(x) = ‖x‖. Obviously, f is proper,
closed, and convex. By Example 2.31, f = σB‖·‖∗ [0,1]. Therefore, by Example 4.9,
f∗ = δB‖·‖∗ [0,1]. We can now use the conjugate subgradient theorem (Corollary
4.21) and compute the subdifferential set of f at 0 as follows:

∂f(0) = argminy∈E∗f∗(y) = argminy∈E∗δB‖·‖∗ [0,1] = B‖·‖∗ [0, 1].

This result was already established in Example 3.3.

A relation between Lipschitz continuity of a function and the boundedness
of its subgradients over a given set was established in Theorem 3.61. We end this
chapter with a related result showing that Lipschitz continuity over the entire space
is also equivalent to boundedness of the domain of the conjugate.
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106 Chapter 4. Conjugate Functions

Theorem 4.23 (Lipschitz continuity and boundedness of the domain of
the conjugate). Let f : E → R be convex. Then the following three claims are
equivalent for a given constant L > 0:

(i) |f(x)− f(y)| ≤ L‖x− y‖ for any x,y ∈ E.

(ii) ‖g‖∗ ≤ L for any g ∈ ∂f(x),x ∈ E.

(iii) dom(f∗) ⊆ B‖·‖∗ [0, L].

Proof. The equivalence between (i) and (ii) follows from Theorem 3.61. We will
show that (iii) implies (ii). Indeed, assume that (iii) holds, that is, dom(f∗) ⊆
B‖·‖∗ [0, L]. Since by the conjugate subgradient theorem (Corollary 4.21) for any
x ∈ E,

∂f(x) = argmaxy∈E∗ {〈x,y〉 − f∗(y)} ,

it follows that ∂f(x) ⊆ dom(f∗), and hence in particular ∂f(x) ⊆ B‖·‖∗ [0, L] for any
x ∈ E, establishing (ii). In the reverse direction, we will show that the implication
(i) ⇒ (iii) holds. Suppose that (i) holds. Then in particular

f(x)− f(0) ≤ |f(x) − f(0)| ≤ L‖x‖,

and hence
−f(x) ≥ −f(0)− L‖x‖.

Therefore, for any y ∈ E∗,

f∗(y) = max
x∈E

{〈x,y〉 − f(x)} ≥ max
x∈E

{〈x,y〉 − f(0)− L‖x‖} . (4.17)

To show (iii), we take ỹ ∈ E∗ that satisfies ‖ỹ‖∗ > L and show that ỹ /∈ dom(f∗).
Take a vector y† ∈ E satisfying ‖y†‖ = 1 for which 〈ỹ,y†〉 = ‖ỹ‖∗ (such a vector
exists by the definition of the dual norm). Define C = {αy† : α ≥ 0} ⊆ E. We can
now continue (4.17) (with y = ỹ) and write

f∗(ỹ) ≥ max
x∈E

{〈x, ỹ〉 − f(0)− L‖x‖}

≥ max
x∈C

{〈x, ỹ〉 − f(0)− L‖x‖}

= max
α≥0

{
〈αỹ,y†〉 − f(0)− Lα‖y†‖

}
= max

α≥0
{α‖ỹ‖∗ − f(0)− Lα}

= max
α≥0

{α(‖ỹ‖∗ − L)− f(0)}

‖ỹ‖∗>L
= ∞,

thus showing that ỹ /∈ dom(f∗), establishing claim (iii).
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Chapter 5

Smoothness and Strong
Convexity

5.1 L-Smooth Functions

We begin with the definition of L-smoothness.

Definition 5.1 (L-smoothness). Let L ≥ 0. A function f : E → (−∞,∞] is
said to be L-smooth over a set D ⊆ E if it is differentiable over D and satisfies

‖∇f(x)− ∇f(y)‖∗ ≤ L‖x− y‖ for all x,y ∈ D.

The constant L is called the smoothness parameter.

Obviously, by the definition of differentiability, if f is L-smooth over a set
D ⊆ E, this means in particular that D ⊆ int(domf). If a function is L-smooth over
E, then we will just refer to it as L-smooth (without mentioning the entire space).
Another frequent terminology in the literature refers to an L-smooth function over
D as “a function with Lipschitz gradient with constant L.” The class of L-smooth
functions is denoted by C1,1

L (D). When D = E, the class is often denoted by C1,1
L

instead of C1,1
L (E). The class of functions which are L-smooth for some L ≥ 0 is

denoted by C1,1.
By the definition of L-smoothness, it is clear that if a function is L1-smooth,

then it is also L2-smooth for any L2 ≥ L1. It is therefore sometimes interesting to
discuss the value of the smallest possible smoothness parameter of a given function.

Example 5.2 (smoothness of quadratic functions). Consider the function
f : Rn → R given by f(x) = 1

2x
TAx+ bTx+ c, where A ∈ Sn,b ∈ Rn, and c ∈ R.

We assume that Rn is endowed with the lp-norm (1 ≤ p ≤ ∞). Then, for any
x,y ∈ Rn,

‖∇f(x)− ∇f(y)‖q = ‖Ax−Ay‖q ≤ ‖A‖p,q‖x− y‖p,

where ‖ · ‖p,q is the induced norm given by (see also Section 1.8.2)

‖A‖p,q = max{‖Ax‖q : ‖x‖p ≤ 1},

107
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108 Chapter 5. Smoothness and Strong Convexity

with q ∈ [1,∞] satisfying 1
p+

1
q = 1. We can thus conclude that f is ‖A‖p,q-smooth.

We will show that ‖A‖p,q is the smallest smoothness parameter. For that, assume
that f is L-smooth. Take a vector x̃ satisfying ‖x̃‖p = 1 and ‖Ax̃‖q = ‖A‖p,q. The
existence of such a vector is guaranteed by the definition the induced matrix norm.
Then

‖A‖p,q = ‖Ax̃‖q = ‖∇f(x̃)− ∇f(0)‖q ≤ L‖x̃− 0‖p = L.

We thus showed that if f is L-smooth, then L ≥ ‖A‖p,q, proving that ‖A‖p,q is
indeed the smallest possible smoothness parameter.

Example 5.3 (0-smoothness of affine functions). Let f : E → R be given by
f(x) = 〈b,x〉 + c, where b ∈ E∗ and c ∈ R. For any x,y ∈ E,

‖∇f(x)− ∇f(y)‖∗ = ‖b− b‖∗ = 0 ≤ 0‖x− y‖,

showing that affine functions are 0-smooth.

The next example will utilize a well-known result on the orthogonal projection
operator, which was introduced in Example 3.31. A more general result will be
shown later on in Theorem 6.42.

Theorem 5.4 (see [10, Theorem 9.9]). Let E be a Euclidean space, and let
C ⊆ E be a nonempty closed and convex set. Then

(a) (firm nonexpansiveness) For any v,w ∈ E,

〈PC(v) − PC(w),v −w〉 ≥ ‖PC(v)− PC(w)‖2. (5.1)

(b) (nonexpansiveness) For any v,w ∈ E,

‖PC(v) − PC(w)‖ ≤ ‖v −w‖. (5.2)

Example 5.5 (1-smoothness of 1
2
d2
C). Suppose that E is a Euclidean space, and

let C ⊆ E be a nonempty closed and convex set. Consider the function ϕC(x) =
1
2d

2
C(x). By Example 3.31, ϕC is differentiable over E and ∇ϕC(x) = x − PC(x).

We will show that ϕC is 1-smooth. Indeed, for any x,y ∈ E,

‖∇ϕC(x)− ∇ϕC(y)‖2 = ‖x− y − PC(x) + PC(y)‖2

= ‖x− y‖2 − 2〈PC(x)− PC(y),x − y〉+ ‖PC(x)− PC(y)‖2
(∗)
≤ ‖x− y‖2 − 2‖PC(x) − PC(y)‖2 + ‖PC(x)− PC(y)‖2

= ‖x− y‖2 − ‖PC(x)− PC(y)‖2

≤ ‖x− y‖2,

where the inequality (∗) follows by the firm nonexpansivity of the orthogonal pro-
jection operator (Theorem 5.4(a)).

Example 5.6 (1-smoothness of 1
2
‖ · ‖2 − 1

2
d2
C). Suppose that E is a Euclidean

space, and let C ⊆ E be a nonempty closed convex set. Consider the function
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5.1. L-Smooth Functions 109

ψC(x) = 1
2‖x‖2 − 1

2d
2
C(x). By Example 2.17, ψC is convex.23 We will now show

that it is 1-smooth. By Example 3.31, 1
2d

2
C(x) is differentiable over E, and its

gradient is given by x− PC(x). Therefore,

∇ψC(x) = x− (x− PC(x)) = PC(x).

The 1-smoothness of ψC now follows by the nonexpansivity of the projection oper-
ator (Theorem 5.4(b))—for any x,y ∈ E,

‖∇ψC(x) − ∇ψC(y)‖ = ‖PC(x)− PC(y)‖ ≤ ‖x− y‖.

5.1.1 The Descent Lemma

An extremely useful result on L-smooth functions is the descent lemma, which states
that they can be upper bounded by a certain quadratic function.

Lemma 5.7 (descent lemma). Let f : E → (−∞,∞] be an L-smooth function
(L ≥ 0) over a given convex set D. Then for any x,y ∈ D,

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L

2
‖x− y‖2. (5.3)

Proof. By the fundamental theorem of calculus,

f(y) − f(x) =

∫ 1

0

〈∇f(x+ t(y − x)),y − x〉dt.

Therefore,

f(y)− f(x) = 〈∇f(x),y − x〉+
∫ 1

0

〈∇f(x+ t(y − x)) − ∇f(x),y − x〉dt.

Thus,

|f(y)− f(x)− 〈∇f(x),y − x〉| =
∣∣∣∣∫ 1

0

〈∇f(x+ t(y − x))− ∇f(x),y − x〉dt
∣∣∣∣

≤
∫ 1

0

|〈∇f(x + t(y − x)) − ∇f(x),y − x〉|dt

(∗)
≤
∫ 1

0

‖∇f(x+ t(y − x)) − ∇f(x)‖∗ · ‖y − x‖dt

≤
∫ 1

0

tL‖y − x‖2dt

=
L

2
‖y− x‖2,

where in (∗) we used the generalized Cauchy–Schwarz inequality (Lemma 1.4).

23The convexity of ψC actually does not require the convexity of C; see Example 2.17.
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110 Chapter 5. Smoothness and Strong Convexity

5.1.2 Characterizations of L-Smooth Functions

When f is convex, the next result gives several different and equivalent characteri-
zations of the L-smoothness property of f over the entire space. Note that property
(5.3) from the descent lemma is one of the mentioned equivalent properties.

Theorem 5.8 (characterizations of L-smoothness). Let f : E → R be a
convex function, differentiable over E, and let L > 0. Then the following claims are
equivalent:

(i) f is L-smooth.

(ii) f(y) ≤ f(x) + 〈∇f(x),y − x〉+ L
2 ‖x− y‖2 for all x,y ∈ E.

(iii) f(y) ≥ f(x) + 〈∇f(x),y − x〉+ 1
2L‖∇f(x)− ∇f(y)‖2∗ for all x,y ∈ E.

(iv) 〈∇f(x)− ∇f(y),x − y〉 ≥ 1
L‖∇f(x)− ∇f(y)‖2∗ for all x,y ∈ E.

(v) f(λx+(1−λ)y) ≥ λf(x)+ (1−λ)f(y)− L
2 λ(1−λ)‖x−y‖2 for any x,y ∈ E

and λ ∈ [0, 1].

Proof. (i) ⇒ (ii). The fact that (i) implies (ii) is just the descent lemma (Lemma
5.7).

(ii) ⇒ (iii). Suppose that (ii) is satisfied. We can assume that ∇f(x) 
= ∇f(y)
since otherwise the inequality (iii) is trivial by the convexity of f . For a fixed x ∈ E

consider the function

gx(y) = f(y) − f(x)− 〈∇f(x),y − x〉, y ∈ E.

The function gx also satisfies property (ii). Indeed, for any y, z ∈ E,

gx(z) = f(z)− f(x)− 〈∇f(x), z − x〉

≤ f(y) + 〈∇f(y), z − y〉+ L

2
‖z− y‖2 − f(x)− 〈∇f(x), z − x〉

= f(y) − f(x)− 〈∇f(x),y − x〉+ 〈∇f(y) − ∇f(x), z− y〉 + L

2
‖z− y‖2

= gx(y) + 〈∇gx(y), z − y〉 + L

2
‖z− y‖2, (5.4)

where we used in the last equality the fact that ∇gx(y) = ∇f(y) − ∇f(x) for any
y ∈ E. In particular, ∇gx(x) = 0, which by the convexity of gx implies that x is a
global minimizer of g, meaning that

gx(x) ≤ gx(z) for all z ∈ E. (5.5)

Let y ∈ E, and let v ∈ E be a vector satisfying ‖v‖ = 1 and 〈∇gx(y),v〉 =
‖∇gx(y)‖∗. Substituting

z = y − ‖∇gx(y)‖∗
L

v (5.6)

into (5.5) yields

0 = gx(x) ≤ gx

(
y − ‖∇gx(y)‖∗

L
v

)
.
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5.1. L-Smooth Functions 111

Combining the last inequality with (5.4) (using the specific choice of z given in
(5.6)), we obtain

0 = gx(x)

≤ gx(y)−
‖∇gx(y)‖∗

L
〈∇gx(y),v〉 +

1

2L
‖∇gx(y)‖2∗ · ‖v‖2

= gx(y)−
1

2L
‖∇gx(y)‖2∗

= f(y)− f(x)− 〈∇f(x),y − x〉 − 1

2L
‖∇f(x)− ∇f(y)‖2∗,

which is claim (iii).
(iii) ⇒ (iv). Writing the inequality (iii) for the two pairs (x,y), (y,x) yields

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ 1

2L
‖∇f(x)− ∇f(y)‖2∗,

f(x) ≥ f(y) + 〈∇f(y),x − y〉 + 1

2L
‖∇f(x)− ∇f(y)‖2∗.

Adding the two inequalities and rearranging terms results in (iv).
(iv) ⇒ (i). The Lipschitz condition

‖∇f(x)− ∇f(y)‖∗ ≤ L‖x− y‖

is trivial when ∇f(x) = ∇f(y). We will therefore assume that ∇f(x) 
= ∇f(y).
By (iv) and the generalized Cauchy–Schwarz inequality (Lemma 1.4) we have for
any x,y ∈ E,

‖∇f(x)− ∇f(y)‖∗ · ‖x− y‖ ≥ 〈∇f(x)− ∇f(y),x − y〉 ≥ 1

L
‖∇f(x)− ∇f(y)‖2∗.

Dividing by ‖∇f(x)− ∇f(y)‖∗ and multiplying by L, (i) is obtained.
We have just shown the equivalence between (i), (ii), (iii), and (iv). To prove

that (v) is also equivalent to each of these four claims, we will establish the equiv-
alence (ii) ⇔ (v).

(ii) ⇒ (v). Let x,y ∈ E and λ ∈ [0, 1]. Denote xλ = λx + (1 − λ)y. Then by
(ii),

f(x) ≤ f(xλ) + 〈∇f(xλ),x− xλ〉+
L

2
‖x− xλ‖2,

f(y) ≤ f(xλ) + 〈∇f(xλ),y − xλ〉+
L

2
‖y − xλ‖2,

which is the same as

f(x) ≤ f(xλ) + (1 − λ)〈∇f(xλ),x− y〉+ L(1− λ)2

2
‖x− y‖2

f(y) ≤ f(xλ) + λ〈∇f(xλ),y − x〉 + Lλ2

2
‖x− y‖2.

Multiplying the first inequality by λ and the second by 1−λ and adding them yields
the inequality (iv).
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112 Chapter 5. Smoothness and Strong Convexity

(v) ⇒ (ii). Rearranging terms in the inequality (v), we obtain that it is equiv-
alent to

f(y) ≤ f(x) +
f(x+ (1 − λ)(y − x))− f(x)

1− λ
+
L

2
λ‖x− y‖2.

Taking λ→ 1−, the last inequality becomes

f(y) ≤ f(x) + f ′(x;y − x) +
L

2
‖x− y‖2,

which, by the fact that f ′(x;y − x) = 〈∇f(x),y − x〉 (see Theorem 3.29), implies
(ii).

Remark 5.9 (necessity of convexity in Theorem 5.8). The convexity assump-
tion in Theorem 5.8 is essential. Consider, for example, the function f : Rn → R

given by f(x) = − 1
2‖x‖22, which is 1-smooth w.r.t. the l2-norm but is not L-smooth

for L < 1 (see Example 5.2). However, f is concave, and hence

f(y) ≤ f(x) + 〈∇f(x),y − x〉,

which implies that property (ii) of Theorem 5.8 is satisfied with L = 0, although the
function is obviously not 0-smooth.

The next example will require the linear approximation theorem, which we
now recall.

Theorem 5.10 (linear approximation theorem, [10, Theorem 1.24], [101,
Fact 3.3.10]). Let f : U → R be a twice continuously differentiable function24

over an open set U ⊆ Rn, and let x ∈ U, r > 0 satisfy B(x, r) ⊆ U . Then for any
y ∈ B(x, r) there exists ξ ∈ [x,y] such that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(ξ)(y − x).

Example 5.11 ((p − 1)-smoothness of the half-squared lp-norm func-
tion).25 Consider the convex function f : Rn → R given by

f(x) =
1

2
‖x‖2p =

1

2

(
n∑
i=1

|xi|p
) 2

p

,

where p ∈ [2,∞). We assume that Rn is endowed with the lp-norm and show that
f is (p − 1)-smooth w.r.t. the lp-norm. The result was already established for the
case p = 2 in Example 5.2, and we will henceforth assume that p > 2. We begin by
computing the partial derivatives:

∂f

∂xi
(x) =

⎧⎪⎨⎪⎩ sgn(xi)
|xi|p−1

‖x‖p−2
p

, x 
= 0,

0, x = 0,

24By “twice continuously differentiable over U ,” we mean that the function has second-order
partial derivatives, which are continuous over U .

25The analysis in Example 5.11 follows the derivation of Ben-Tal, Margalit, and Nemirovski [24,
Appendix 1].
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5.1. L-Smooth Functions 113

The partial derivatives are continuous over Rn, and hence f is differentiable over
Rn (in the sense of Definition 3.28).26 The second-order partial derivatives exist for
any x 
= 0 and are given by

∂2f

∂xi∂xj
(x) =

⎧⎪⎨⎪⎩
(2− p)sgn(xi)sgn(xj)

|xi|p−1|xj|p−1

‖x‖2p−2
p

, i 
= j,

(p− 1) |xi|p−2

‖x‖p−2
p

+ (2− p) |xi|2p−2

‖x‖2p−2
p

, i = j.

It is easy to see that the second-order partial derivatives are continuous for any
x 
= 0. We will show that property (ii) of Theorem 5.8 is satisfied with L = p− 1.
Let x,y ∈ Rn be such that 0 /∈ [x,y]. Then by the linear approximation theorem
(Theorem 5.10)—taking U to be some open set containing [x,y] but not containing
0—there exists ξ ∈ [x,y] for which

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(ξ)(y − x). (5.7)

We will show that dT∇2f(ξ)d ≤ (p − 1)‖d‖2p for any d ∈ Rn. Since ∇2f(tξ) =
∇2f(ξ) for any t ∈ R, we can assume without loss of generality that ‖ξ‖p = 1.
Now, for any d ∈ Rn,

dT∇2f(ξ)d = (2 − p)‖ξ‖2−2pp

(
n∑
i=1

|ξi|p−1sgn(ξi)di

)2

+ (p− 1)‖ξ‖2−pp

n∑
i=1

|ξi|p−2d2i

≤ (p− 1)‖ξ‖2−pp

n∑
i=1

|ξi|p−2d2i , (5.8)

where the last inequality follows by the fact that p > 2. Using the generalized
Cauchy–Schwarz inequality (Lemma 1.4) with ‖ · ‖ = ‖ · ‖ p

p−2
, we have

n∑
i=1

|ξi|p−2d2i ≤
(

n∑
i=1

(|ξi|p−2)
p

p−2

) p−2
p
(

n∑
i=1

(d2i )
p
2

) 2
p

=

(
n∑
i=1

|ξi|p
) p−2

p
(

n∑
i=1

|di|p
) 2

p

= ‖d‖2p. (5.9)

Combining (5.8) and (5.9), we obtain that for any d ∈ Rn,

dT∇2f(ξ)d ≤ (p− 1)‖d‖2p,

and specifically, for d = x− y,

(y − x)T∇2f(ξ)(y − x) ≤ (p− 1)‖x− y‖2p.

Plugging the above inequality into (5.7) implies the inequality

f(y) ≤ f(x) +∇f(x)T (y − x) +
p− 1

2
‖x− y‖2p. (5.10)

26See, for example, [112, Theorem 9.21] for a precise statement of this result.
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114 Chapter 5. Smoothness and Strong Convexity

The inequality (5.10) was proven for any x,y ∈ Rn that satisfy 0 /∈ [x,y]. We can
show that it holds for any x,y ∈ Rn using a continuity argument. Indeed, assume
that 0 ∈ [x,y]. Then we can find a sequence {yk}k≥0 converging to y for which
0 /∈ [x,yk]. Thus, by what was already proven, for any k ≥ 0,

f(yk) ≤ f(x) +∇f(x)T (yk − x) +
p− 1

2
‖x− yk‖2p.

Taking k → ∞ in the last inequality and using the continuity of f , we obtain that
(5.10) holds. To conclude, we established that (5.10) holds for any x,y ∈ Rn, and
thus by Theorem 5.8 (equivalence between properties (i) and (ii)) and the convexity
of f , it follows that f is (p− 1)-smooth w.r.t. the lp-norm.

5.1.3 Second-Order Characterization

We will now consider the space E = Rn endowed with the lp-norm (p ≥ 1). For
twice continuously differentiable functions, it is possible to fully characterize the
property of L-smoothness via the norm of the Hessian matrix.

Theorem 5.12 (L-smoothness and boundedness of the Hessian). Let f :
Rn → R be a twice continuously differentiable function over Rn. Then for a given
L ≥ 0, the following two claims are equivalent:

(i) f is L-smooth w.r.t. the lp-norm (p ∈ [1,∞]).

(ii) ‖∇2f(x)‖p,q ≤ L for any x ∈ Rn, where q ∈ [1,∞] satisfies 1
p + 1

q = 1.

Proof. (ii) ⇒ (i). Suppose that ‖∇2f(x)‖p,q ≤ L for any x ∈ Rn. Then by the
fundamental theorem of calculus, for all x,y ∈ Rn,

∇f(y) = ∇f(x) +
∫ 1

0

∇2f(x+ t(y − x))(y − x)dt

= ∇f(x) +
(∫ 1

0

∇2f(x+ t(y − x))dt

)
· (y − x).

Then

‖∇f(y)− ∇f(x)‖q =
∥∥∥∥(∫ 1

0

∇2f(x+ t(y − x))dt

)
· (y − x)

∥∥∥∥
q

≤
∥∥∥∥∫ 1

0

∇2f(x+ t(y − x))dt

∥∥∥∥
p,q

‖y− x‖p

≤
(∫ 1

0

‖∇2f(x+ t(y − x))‖p,qdt
)

‖y− x‖p

≤ L‖y− x‖p,

establishing (i).
(i) ⇒ (ii). Suppose now that f is L-smooth w.r.t. the lp-norm. Then by the

fundamental theorem of calculus, for any d ∈ Rn and α > 0,

∇f(x+ αd)− ∇f(x) =
∫ α

0

∇2f(x+ td)ddt.
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5.1. L-Smooth Functions 115

Thus, ∥∥∥∥(∫ α

0

∇2f(x+ td)dt

)
d

∥∥∥∥
q

= ‖∇f(x+ αd)− ∇f(x)‖q ≤ αL‖d‖p.

Dividing by α and taking the limit α → 0+, we obtain∥∥∇2f(x)d
∥∥
q
≤ L‖d‖p for any d ∈ R

n,

implying that ‖∇2f(x)‖p,q ≤ L.

A direct consequence is that for twice continuously differentiable convex func-
tions, L-smoothness w.r.t. the l2-norm is equivalent to the property that the maxi-
mum eigenvalue of the Hessian matrix is smaller than or equal to L.

Corollary 5.13. Let f : Rn → R be a twice continuously differentiable convex func-
tion over Rn. Then f is L-smooth w.r.t. the l2-norm if and only if λmax(∇2f(x)) ≤
L for any x ∈ Rn.

Proof. Since f is convex, it follows that ∇2f(x)  0 for any x ∈ Rn. Therefore,
in this case,

‖∇2f(x)‖2,2 =
√
λmax((∇2f(x))2) = λmax(∇2f(x)),

which, combined with Theorem 5.12, establishes the desired result.

Example 5.14 (1-smoothness of
√
1 + ‖ · ‖2

2 w.r.t. the l2-norm). Let f :
Rn → R be the convex function given by

f(x) =
√
1 + ‖x‖22.

We will show that f is 1-smooth w.r.t. the l2-norm. For any x ∈ Rn,

∇f(x) = x√
‖x‖22 + 1

and

∇2f(x) =
1√

‖x‖22 + 1
I− xxT

(‖x‖22 + 1)3/2
� 1√

‖x‖22 + 1
I � I.

Therefore, λmax(∇2f(x)) ≤ 1 for all x ∈ Rn, and hence by Corollary 5.13 it follows
that f is 1-smooth w.r.t. the l2-norm.

Example 5.15 (1-smoothness of the log-sum-exp function w.r.t. the l2, l∞
norms). Consider the log-sum-exp function f : Rn → R given by

f(x) = log (ex1 + ex2 + · · ·+ exn) .

We will first show that it is 1-smooth w.r.t. the l2-norm. The partial derivatives of
f are

∂f

∂xi
(x) =

exi∑n
k=1 e

xk
, i = 1, 2, . . . , n,
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116 Chapter 5. Smoothness and Strong Convexity

and the second-order partial derivatives are

∂2f

∂xi∂xj
(x) =

⎧⎪⎨⎪⎩
− exiexj

(
∑

n
k=1 e

xk)
2 , i 
= j,

− exiexi

(
∑

n
k=1 e

xk)
2 + exi∑

n
k=1 e

xk
, i = j.

We can thus write the Hessian matrix as

∇2f(x) = diag(w)−wwT ,

where wi =
exi∑n

k=1 e
xk
. To show that f is 1-smooth w.r.t. the l2-norm, note that for

any x ∈ Rn,

∇2f(x) = diag(w)−wwT � diag(w) � I,

and hence λmax(∇2f(x)) ≤ 1 for any x ∈ R
n. Noting that the log-sum-exp function

is convex, we can invoke Corollary 5.13 and conclude that f is 1-smooth w.r.t. the
l2-norm.

We will show that f is 1-smooth also w.r.t. the l∞-norm. For that, we begin
by proving that for any d ∈ Rn,

dT∇2f(x)d ≤ ‖d‖2∞. (5.11)

Indeed,

dT∇2f(x)d = dT (diag(w)−wwT )d = dTdiag(w)d − (wTd)2

≤ dTdiag(w)d

=

n∑
i=1

wid
2
i

≤ ‖d‖2∞
n∑
i=1

wi

= ‖d‖2∞.

Now, since f is twice continuously differentiable over Rn, it follows by the linear
approximation theorem (Theorem 5.10) that for any x,y ∈ Rn there exists ξ ∈ [x,y]
for which

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(ξ)(y − x). (5.12)

Combining (5.12) (taking d = y − x) and (5.11), we obtain the inequality

f(y) ≤ f(x) +∇f(x)T (y − x) +
1

2
‖y − x‖2∞,

which by Theorem 5.8 (equivalence between properties (i) and (ii)) implies the
1-smoothness of f w.r.t. the l∞-norm.
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5.2. Strong Convexity 117

5.1.4 Summary of Smoothness Parameter Computations

The table below summarizes the smoothness parameters of the functions discussed
in this section. The last function will only be discussed later on in Example 6.62.

f(x) dom(f) Parameter Norm Reference

1
2
xTAx+ bTx+ c Rn ‖A‖p,q lp Example 5.2

(A ∈ Sn,b ∈ Rn, c ∈ R)

〈b,x〉+ c E 0 any norm Example 5.3

(b ∈ E∗, c ∈ R)

1
2
‖x‖2p, p ∈ [2,∞) Rn p − 1 lp Example 5.11√

1 + ‖x‖22 Rn 1 l2 Example 5.14

log(
∑n

i=1 e
xi) Rn 1 l2, l∞ Example 5.15

1
2
d2C(x) E 1 Euclidean Example 5.5

(∅ �= C ⊆ E closed convex)

1
2
‖x‖2 − 1

2
d2C(x) E 1 Euclidean Example 5.6

(∅ �= C ⊆ E closed convex)

Hμ(x) (μ > 0) E
1
μ

Euclidean Example 6.62

5.2 Strong Convexity

Definition 5.16 (strong convexity). A function f : E → (−∞,∞] is called
σ-strongly convex for a given σ > 0 if dom(f) is convex and the following in-
equality holds for any x,y ∈ dom(f) and λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) − σ

2
λ(1− λ)‖x− y‖2. (5.13)

We will sometimes use the terminology “strongly convex with parameter σ”
instead of “σ-strongly convex.” It is important to note that the strong convexity
parameter σ depends on the underlying norm, and we will therefore sometimes refer
to it as the “strong convexity parameter w.r.t. ‖ · ‖.” Obviously, strongly convex
functions are necessarily also convex since their domain is assumed to be convex
and inequality (5.13) implies that for any x,y ∈ dom(f) and λ ∈ [0, 1], Jensen’s
inequality is satisfied:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

When the underlying set E is Euclidean, meaning that ‖x‖ =
√

〈x,x〉 for any x ∈ E,
we can write a different and simple property that is equivalent to strong convexity.

Theorem 5.17. Let E be a Euclidean space. Then f : E → (−∞,∞] is a σ-strongly
convex function (σ > 0) if and only if the function f(·)− σ

2 ‖ · ‖2 is convex.
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118 Chapter 5. Smoothness and Strong Convexity

Proof. The function g(x) ≡ f(x) − σ
2 ‖x‖2 is convex if and only if its domain

dom(g) = dom(f) is convex and for any x,y ∈ dom(f) and λ ∈ [0, 1],

g(λx + (1− λ)y) ≤ λg(x) + (1− λ)g(y).

The latter inequality is the same as

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y)+σ
2

[
‖λx+ (1− λ)y‖2 − λ‖x‖2 − (1− λ)‖y‖2

]
.

(5.14)
Now, using the identity (which holds since the norm is assumed to be Euclidean)

‖λx+ (1 − λ)y‖2 − λ‖x‖2 − (1− λ)‖y‖2 = −λ(1− λ)‖x− y‖2,

combined with (5.14), we can conclude that the convexity of g is equivalent to the
convexity of dom(f) and the validity of the inequality

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) − σ

2
λ(1 − λ)‖x− y‖2

for any x,y ∈ dom(f) and λ ∈ [0, 1], namely, to the σ-strong convexity of f .

Remark 5.18. The assumption that the underlying space is Euclidean is essential
in Theorem 5.17. As an example, consider the negative entropy function over the
unit simplex

f(x) ≡

⎧⎪⎨⎪⎩
∑n
i=1 xi log xi, x ∈ Δn,

∞ else.

We will later show (in Example 5.27) that f is a 1-strongly convex function with
respect to the l1-norm. Regardless of this fact, note that the function

g(x) = f(x)− α‖x‖21
is convex for any α > 0 since over the domain of f , we have that ‖x‖1 = 1.
Obviously, it is impossible that a function will be α-strongly convex for any α > 0.
Therefore, the characterization of strong convexity in Theorem 5.17 is not correct
for any norm.

Note that if a function f is σ1-strongly convex (σ1 > 0), then it is necessarily
also σ2-strongly convex for any σ2 ∈ (0, σ1). An interesting problem is to find the
largest possible strong convexity parameter of a given function.

Example 5.19 (strong convexity of quadratic functions). Suppose that E =
Rn is endowed with the l2-norm, and consider the quadratic function f : Rn → R

given by

f(x) =
1

2
xTAx+ bTx+ c,

where A ∈ Sn, b ∈ Rn, and c ∈ R. Then by Theorem 5.17, f is strongly convex
with parameter σ > 0 if and only if the function 1

2x
T (A− σI)x+bTx+c is convex,

which is equivalent to the matrix inequality A− σI  0, namely, to the inequality
λmin(A) ≥ σ. Thus, f is strongly convex if and only if A is positive definite, and
in that case, λmin(A) is its largest possible strong convexity parameter.
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5.2. Strong Convexity 119

A simple result is that the sum of a strongly convex function and a convex function
is always a strongly convex function.

Lemma 5.20. Let f : E → (−∞,∞] be a σ-strongly convex function (σ > 0), and
let g : E → (−∞,∞] be convex. Then f + g is σ-strongly convex.

Proof. Follows directly from the definitions of strong convexity and convexity.
Since f and g are convex, both dom(f) and dom(g) are convex sets, and hence also
dom(f + g) = dom(f) ∩ dom(g) is a convex set. Let x,y ∈ dom(f) ∩ dom(g) and
λ ∈ [0, 1]. Then by the σ-strong convexity of f ,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) − σ

2
λ(1− λ)‖x− y‖2.

Since g is convex,

g(λx + (1− λ)y) ≤ λg(x) + (1− λ)g(y).

Adding the two inequalities, we obtain

(f + g)(λx + (1− λ)y) ≤ λ(f + g)(x) + (1 − λ)(f + g)(y)− σ

2
λ(1− λ)‖x − y‖2,

showing that f + g is σ-strongly convex.

Example 5.21 (strong convexity of 1
2
‖·‖2+δC). Suppose that E is a Euclidean

space, and let C ⊆ E be a nonempty convex set. The function 1
2‖x‖2 is 1-strongly

convex (Example 5.19), and by the convexity of C, δC is convex. Therefore, by
Lemma 5.20, the function 1

2‖x‖2 + δC(x) is 1-strongly convex.

Theorem 5.24 below describes two properties that are equivalent to σ-strong
convexity. The two properties are of a first-order nature in the sense that they are
written in terms of the function and its subgradients. The proof uses the following
version of the mean-value theorem for one-dimensional functions.

Lemma 5.22 (see [67, p. 26]). Let f : R → (−∞,∞] be a closed convex function,
and let [a, b] ⊆ dom(f)(a < b). Then

f(b)− f(a) =

∫ b

a

h(t)dt,

where h : (a, b) → R satisfies h(t) ∈ ∂f(t) for any t ∈ (a, b).

Another technical lemma that is being used in the proof is the so-called line
segment principle.

Lemma 5.23 (line segment principle [108, Theorem 6.1]). Let C be a convex
set. Suppose that x ∈ ri(C),y ∈ cl(C), and let λ ∈ (0, 1]. Then λx+(1−λ)y ∈ ri(C).

Theorem 5.24 (first-order characterizations of strong convexity). Let f :
E → (−∞,∞] be a proper closed and convex function. Then for a given σ > 0, the
following three claims are equivalent:
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120 Chapter 5. Smoothness and Strong Convexity

(i) f is σ-strongly convex.

(ii)

f(y) ≥ f(x) + 〈g,y − x〉+ σ

2
‖y − x‖2

for any x ∈ dom(∂f),y ∈ dom(f) and g ∈ ∂f(x).

(iii)
〈gx − gy,x− y〉 ≥ σ‖x− y‖2 (5.15)

for any x,y ∈ dom(∂f), and gx ∈ ∂f(x),gy ∈ ∂f(y).

Proof. (ii) ⇒ (i). Assume that (ii) is satisfied. To show (i), take x,y ∈ dom(f)
and λ ∈ (0, 1). Take some z ∈ ri(dom(f)). Then for any α ∈ (0, 1], by the line
segment principle (Lemma 5.23), the vector x̃ = (1 − α)x + αz is in ri(dom(f)).
At this point we fix α. Using the notation xλ = λx̃ + (1 − λ)y, we obtain that
xλ ∈ ri(dom(f)) for any λ ∈ (0, 1), and hence, by Theorem 3.18, ∂f(xλ) 
= ∅,
meaning that xλ ∈ dom(∂f). Take g ∈ ∂f(xλ). Then by (ii),

f(x̃) ≥ f(xλ) + 〈g, x̃− xλ〉+
σ

2
‖x̃− xλ‖2,

which is the same as

f(x̃) ≥ f(xλ) + (1 − λ)〈g, x̃− y〉 + σ(1 − λ)2

2
‖y− x̃‖2. (5.16)

Similarly,

f(y) ≥ f(xλ) + λ〈g,y − x̃〉+ σλ2

2
‖y− x̃‖2. (5.17)

Multiplying (5.16) by λ and (5.17) by 1−λ and adding the two resulting inequalities,
we obtain that

f(λx̃+ (1− λ)y) ≤ λf(x̃) + (1− λ)f(y) − σλ(1 − λ)

2
‖x̃− y‖2.

Plugging the expression for x̃ in the above inequality, we obtain that

g1(α) ≤ λg2(α) + (1 − λ)f(y) − σλ(1 − λ)

2
‖(1− α)x + αz− y‖2, (5.18)

where g1(α) ≡ f(λ(1− α)x+ (1 − λ)y + λαz) and g2(α) ≡ f((1− α)x + αz). The
functions g1 and g2 are one-dimensional proper closed and convex functions, and
consequently, by Theorem 2.22, they are also continuous over their domain. Thus,
taking α → 0+ in (5.18), it follows that

g1(0) ≤ λg2(0) + (1− λ)f(y) − σλ(1 − λ)

2
‖x− y‖2.

Finally, since g1(0) = f(λx+ (1− λ)y) and g2(0) = f(x), we obtain the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) − σλ(1 − λ)

2
‖x− y‖2,

establishing the σ-strong convexity of f .

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



5.2. Strong Convexity 121

(i) ⇒ (iii). Assume that (i) is satisfied. Let x,y ∈ dom(∂f) and gx ∈
∂f(x),gy ∈ ∂f(y). We will show that inequality (5.15) is satisfied. Let λ ∈ [0, 1)
and denote xλ = λx+ (1− λ)y. By condition (i),

f(xλ) ≤ λf(x) + (1− λ)f(y) − σ

2
λ(1− λ)‖x − y‖2,

which is the same as

f(xλ)− f(x)

1− λ
≤ f(y)− f(x)− σ

2
λ‖x− y‖2, (5.19)

Since gx ∈ ∂f(x),

f(xλ)− f(x)

1− λ
≥ 〈gx,xλ − x〉

1− λ
= 〈gx,y − x〉,

which, combined with (5.19), yields the inequality

〈gx,y − x〉 ≤ f(y)− f(x)− σλ

2
‖x− y‖2. (5.20)

Inequality (5.20) holds for any λ ∈ [0, 1). Taking the limit λ → 1−, we conclude
that

〈gx,y − x〉 ≤ f(y) − f(x)− σ

2
‖x− y‖2. (5.21)

Changing the roles of x and y yields the inequality

〈gy,x− y〉 ≤ f(x)− f(y)− σ

2
‖x− y‖2. (5.22)

Adding inequalities (5.21) and (5.22), we can finally conclude that

〈gx − gy,x− y〉 ≥ σ‖x− y‖2,

which is the desired inequality.
(iii) ⇒ (ii) Suppose that (iii) is satisfied, and let x ∈ dom(∂f),y ∈ dom(f),

and g ∈ ∂f(x). Let z be any vector in ri(dom(f)), and define ỹ = (1−α)y+αz for
some α ∈ (0, 1), which at this point we fix. By the line segment principle (Lemma
5.23), ỹ ∈ ri(dom(f)). Consider now the one-dimensional function

ϕ(λ) = f(xλ), λ ∈ [0, 1],

where xλ = (1 − λ)x + λỹ. For any λ ∈ (0, 1), let gλ ∈ ∂f(xλ) (whose existence is
guaranteed since xλ ∈ ri(dom(f)) by the line segment principle). Then 〈gλ, ỹ−x〉 ∈
∂ϕ(λ), and hence by the mean-value theorem (Lemma 5.22),

f(ỹ)− f(x) = ϕ(1)− ϕ(0) =

∫ 1

0

〈gλ, ỹ − x〉dλ. (5.23)

Since g ∈ ∂f(x) and gλ ∈ ∂f(xλ), by property (iii),

〈gλ − g,xλ − x〉 ≥ σ‖xλ − x‖2,
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122 Chapter 5. Smoothness and Strong Convexity

which is equivalent to

〈gλ, ỹ − x〉 ≥ 〈g, ỹ − x〉+ σλ‖ỹ − x‖2.

Plugging the last inequality into (5.23), we obtain that

f(ỹ)− f(x) ≥
∫ 1

0

[
〈g, ỹ − x〉+ σλ‖ỹ − x‖2

]
dλ

= 〈g, ỹ − x〉+ σ

2
‖ỹ− x‖2.

Recalling the definition of ỹ, we obtain that for any α ∈ (0, 1),

f((1− α)y + αz) ≥ f(x) + 〈g, (1− α)y + αz− x〉 + σ

2
‖(1− α)y + αz− x‖2.

Taking α → 0+ and using the continuity of the one-dimensional function α �→
f((1 − α)y + αz) over [0, 1] (follows by invoking Theorem 2.22 and recalling that
the one-dimensional function is closed and convex), we obtain the desired result

f(y) ≥ f(x) + 〈g,y − x〉 + σ

2
‖y − x‖2.

The next theorem states that a proper closed and strongly convex function
has a unique minimizer and that it satisfies a certain growth property around the
minimizer.

Theorem 5.25 (existence and uniqueness of a minimizer of closed strongly
convex functions). Let f : E → (−∞,∞] be a proper closed and σ-strongly convex
function (σ > 0). Then

(a) f has a unique minimizer;

(b) f(x)− f(x∗) ≥ σ
2 ‖x− x∗‖2 for all x ∈ dom(f), where x∗ is the unique mini-

mizer of f .

Proof. (a) Since dom(f) is nonempty and convex, it follows that there exists
x0 ∈ ri(dom(f)) (Theorem 3.17), and consequently, by Theorem 3.18, ∂f(x0) 
= ∅.
Let g ∈ ∂f(x0). Then by the equivalence between σ-strong convexity and property
(ii) of Theorem 5.24, it follows that

f(x) ≥ f(x0) + 〈g,x− x0〉+
σ

2
‖x− x0‖2 for all x ∈ E.

Since all norms in finite dimensional spaces are equivalent, there exists a constant
C > 0 such that

‖y‖ ≥
√
C‖y‖a,

where ‖ ·‖a ≡
√

〈·, ·〉 denotes the Euclidean norm associated with the inner product
of the space E (which might be different than the endowed norm ‖ · ‖). Therefore,

f(x) ≥ f(x0) + 〈g,x − x0〉+
Cσ

2
‖x− x0‖2a for any x ∈ E,
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5.3. Smoothness and Strong Convexity Correspondence 123

which is the same as

f(x) ≥ f(x0)−
1

2Cσ
‖g‖2a +

Cσ

2

∥∥∥∥x−
(
x0 − 1

Cσ
g

)∥∥∥∥2
a

for any x ∈ E.

In particular, it follows that

Lev(f, f(x0)) ⊆ B‖·‖a

[
x0 − 1

Cσ
g,

1

Cσ
‖g‖a

]
.

Since f is closed, the above level set is closed (Theorem 2.6), and since it is contained
in a ball, it is also bounded. Therefore, Lev(f, f(x0)) is compact. We can thus
deduce that the optimal set of the problem of minimizing f over dom(f) is the same
as the optimal set of the problem of minimizing f over the nonempty compact set
Lev(f, f(x0)). Invoking Weierstrass theorem for closed functions (Theorem 2.12),
it follows that a minimizer exists. To show the uniqueness, assume that x̃ and x̂
are minimizers of f . Then f(x̃) = f(x̂) = fopt, where fopt is the minimal value of
f . Then by the definition of σ-strong convexity of f ,

fopt ≤ f

(
1

2
x̃+

1

2
x̂

)
≤ 1

2
f(x̃) +

1

2
f(x̂)− σ

8
‖x̃− x̂‖2 = fopt −

σ

8
‖x̃− x̂‖2,

implying that x̃ = x̂ and hence establishing the uniqueness of the minimizer of f .
(b) Let x∗ be the unique minimizer of f . Then by Fermat’s optimality con-

dition (Theorem 3.63), 0 ∈ ∂f(x∗) and hence by using the equivalence between
σ-strong convexity and property (ii) of Theorem 5.24, it follows that

f(x)− f(x∗) ≥ 〈0,x− x∗〉+ σ

2
‖x− x∗‖2 =

σ

2
‖x− x∗‖2 (5.24)

for any x ∈ E, establishing claim (b).

5.3 Smoothness and Strong Convexity
Correspondence

5.3.1 The Conjugate Correspondence Theorem

An extremely useful connection between smoothness and strong convexity is given
in the conjugate correspondence theorem that, loosely speaking, states that f is
σ-strongly convex if and only if f∗ is 1

σ -smooth.

Theorem 5.26 (conjugate correspondence theorem). Let σ > 0. Then

(a) If f : E → R is a 1
σ -smooth convex function, then f∗ is σ-strongly convex

w.r.t. the dual norm ‖ · ‖∗.

(b) If f : E → (−∞,∞] is a proper closed σ-strongly convex function, then f∗ :
E∗ → R is 1

σ -smooth.
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124 Chapter 5. Smoothness and Strong Convexity

Proof. (a) Suppose that f : E → R is a 1
σ -smooth convex function. To prove

that f∗ is σ-strongly convex, take y1,y2 ∈ dom(∂f∗) and v1 ∈ ∂f∗(y1),v2 ∈
∂f∗(y2). Then by the conjugate subgradient theorem (Theorem 4.20), using also
the properness closedness and convexity of f , it follows that y1 ∈ ∂f(v1) and
y2 ∈ ∂f(v2), which, by the differentiability of f , implies that y1 = ∇f(v1) and
y2 = ∇f(v2) (see Theorem 3.33). By the equivalence between properties (i) and
(iv) in Theorem 5.8, we can write

〈y1 − y2,v1 − v2〉 ≥ σ‖y1 − y2‖2∗.

Since the last inequality holds for any y1,y2 ∈ dom(∂f∗) and v1 ∈ ∂f∗(y1),v2 ∈
∂f∗(y2), it follows by the equivalence between σ-strong convexity and property (iii)
of Theorem 5.24 that f∗ is a σ-strongly convex function.

(b) Suppose that f is a proper closed σ-strongly convex function. By the
conjugate subgradient theorem (Corollary 4.21),

∂f∗(y) = argmaxx∈E{〈x,y〉 − f(x)} for any y ∈ E
∗.

Thus, by the strong convexity and closedness of f , along with Theorem 5.25(a), it
follows that ∂f∗(y) is a singleton for any y ∈ E∗. Therefore, by Theorem 3.33, f∗

is differentiable over the entire dual space E∗. To show the 1
σ -smoothness of f∗,

take y1,y2 ∈ E
∗ and denote v1 = ∇f∗(y1),v2 = ∇f∗(y2). These relations, by the

conjugate subgradient theorem (Theorem 4.20), are equivalent to y1 ∈ ∂f(v1),y2 ∈
∂f(v2). Therefore, by Theorem 5.24 (equivalence between properties (i) and (iii)),

〈y1 − y2,v1 − v2〉 ≥ σ‖v1 − v2‖2,

that is,
〈y1 − y2,∇f∗(y1)− ∇f∗(y2)〉 ≥ σ‖∇f∗(y1)− ∇f∗(y2)‖2,

which, combined with the generalized Cauchy–Schwarz inequality (Lemma 1.4),
implies the inequality

‖∇f∗(y1)− ∇f∗(y2)‖ ≤ 1

σ
‖y1 − y2‖∗,

proving the 1
σ -smoothness of f∗.

5.3.2 Examples of Strongly Convex Functions

We can use the conjugate correspondence theorem (Theorem 5.26) to conclude
several results on the strong convexity of several important functions.

Example 5.27 (negative entropy over the unit simplex). Consider the func-
tion f : Rn → (−∞,∞] given by

f(x) =

⎧⎪⎨⎪⎩
∑n
i=1 xi log xi, x ∈ Δn,

∞ else.
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5.3. Smoothness and Strong Convexity Correspondence 125

Then, by Section 4.4.10, the conjugate of this function is the log-sum-exp function
f∗(y) = log (

∑n
i=1 e

yi), which, by Example 5.15, is a 1-smooth function w.r.t. both
the l∞- and l2-norms. Consequently, by the conjugate correspondence theorem, f
is 1-strongly convex w.r.t. both the l1- and l2-norms.

Example 5.28 (squared p-norm for p ∈ (1, 2]). Consider the function f :
Rn → R given by f(x) = 1

2‖x‖2p (p ∈ (1, 2]). Then, by Section 4.4.15, f∗(y) =
1
2‖y‖2q, where q ≥ 2 is determined by the relation 1

p+
1
q = 1. By Example 5.11, f∗ is

a (q−1)-smooth function w.r.t. the lq-norm, which, by the conjugate correspondence
theorem, implies that the function f is 1

q−1 -strongly convex w.r.t. the lp-norm. Since
1
q−1 = p− 1, we conclude that f is (p− 1)-strongly convex w.r.t. the lp-norm.

Example 5.29 (l2 ball-pen function). Consider the ball-pen function f : Rn →
(−∞,∞] given by

f(x) =

⎧⎪⎨⎪⎩ −
√
1− ‖x‖22, ‖x‖2 ≤ 1,

∞ else.

By Section 4.4.13, the conjugate of f is

f∗(y) =
√

‖y‖22 + 1,

which, by Example 5.14, is known to be 1-smooth w.r.t. the l2-norm, and hence,
by the conjugate correspondence theorem, f is 1-strongly convex w.r.t. the l2-
norm.

The table below contains all the strongly convex functions described in this chapter.

f(x) dom(f) Strong
convexity
parameter

Norm Reference

1
2
xTAx+ 2bTx+ c R

n λmin(A) l2 Example 5.19

(A ∈ S
n
++,b ∈ R

n, c ∈ R)

1
2
‖x‖2 + δC(x) C 1 Euclidean Example 5.21

(∅ �= C ⊆ E convex)

−
√

1− ‖x‖22 B‖·‖2 [0, 1] 1 l2 Example 5.29

1
2
‖x‖2p (p ∈ (1, 2]) R

n p− 1 lp Example 5.28∑n
i=1 xi log xi Δn 1 l2 or l1 Example 5.27
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126 Chapter 5. Smoothness and Strong Convexity

5.3.3 Smoothness and Differentiability of the Infimal
Convolution

We will now show that under appropriate conditions, the infimal convolution of a
convex function and an L-smooth convex function is also L-smooth; in addition, we
will derive an expression for the gradient. The proof of the result is based on the
conjugate correspondence theorem.

Theorem 5.30 (smoothness of the infimal convolution). Let f : E →
(−∞,∞] be a proper closed and convex function, and let ω : E → R be an L-smooth
convex function. Assume that f�ω is real-valued. Then the following hold:

(a) f�ω is L-smooth.

(b) Let x ∈ E, and assume that u(x) is a minimizer of

min
u

{f(u) + ω(x− u)} . (5.25)

Then ∇(f�ω)(x) = ∇ω(x− u(x)).

Proof. (a) By Theorem 4.19,

f�ω = (f∗ + ω∗)∗.

Since f and ω are proper closed and convex, then so are f∗, ω∗ (Theorems 4.3,
4.5). In addition, by the conjugate correspondence theorem (Theorem 5.26), ω∗ is
1
L -strongly convex. Therefore, by Lemma 5.20, f∗ + ω∗ is 1

L -strongly convex, and
it is also closed as a sum of closed functions; we will prove that it is also proper.
Indeed, by Theorem 4.16,

(f�ω)∗ = f∗ + ω∗.

Since f�ω is convex (by Theorem 2.19) and proper, it follows that f∗+ω∗ is proper
as a conjugate of a proper and convex function (Theorem 4.5). Thus, since f∗+ω∗

is proper closed and 1
L -strongly convex function, by the conjugate correspondence

theorem, it follows that f�ω = (f∗ + ω∗)∗ is L-smooth.
(b) Let x ∈ E be such that u(x) is a minimizer of (5.25), namely,

(f�ω)(x) = f(u(x)) + ω(x− u(x)). (5.26)

For convenience, define z ≡ ∇ω(x−u(x)). Our objective is to show that ∇(f�ω)(x)
= z. This means that we have to show that for any ξ ∈ E, lim‖ξ‖→0 |φ(ξ)|/‖ξ‖ = 0,
where φ(ξ) ≡ (f�ω)(x + ξ) − (f�ω)(x) − 〈ξ, z〉. By the definition of the infimal
convolution,

(f�ω)(x+ ξ) ≤ f(u(x)) + ω(x+ ξ − u(x)), (5.27)
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5.3. Smoothness and Strong Convexity Correspondence 127

which, combined with (5.26), yields

φ(ξ) = (f�ω)(x+ ξ)− (f�ω)(x)− 〈ξ, z〉

≤ ω(x+ ξ − u(x)) − ω(x− u(x))− 〈ξ, z〉 [(5.26), (5.27)]

≤ 〈ξ,∇ω(x+ ξ − u(x))〉 − 〈ξ, z〉, [gradient inequality for ω]

= 〈ξ,∇ω(x+ ξ − u(x)) − ∇ω(x− u(x))〉 [substitution of z]

≤ ‖ξ‖ · ‖∇ω(x+ ξ − u(x)) − ∇ω(x− u(x))‖∗ [generalized Cauchy–Schwarz]

≤ L‖ξ‖2. [L-smoothness of ω]

To complete the proof, it is enough to show that we also have φ(ξ) ≥ −L‖ξ‖2.
Since f�ω is convex, so is φ, which, along the fact that φ(0) = 0, implies that
φ(ξ) ≥ −φ(−ξ), and hence the desired result follows.

Example 5.31 (revisiting the 1-smoothness of 1
2
d2
C). Suppose that E is a

Euclidean space and let C ⊆ E be a nonempty closed and convex set. Consider
the function ϕC(x) = 1

2d
2
C(x). We have already shown in Example 5.5 that it is

1-smooth. We will provide here a second proof for this result, which is based on
Theorem 5.30. Note that ϕC = δC�h, where h(x) = 1

2‖x‖2. Since h is a real-valued
1-smooth convex function, and since δC is proper closed and convex, it follows by
Theorem 5.30 that ϕC is 1-smooth.
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Chapter 6

The Proximal Operator

Underlying Space: In this chapter E is a Euclidean space, meaning a finite
dimensional space endowed with an inner product 〈·, ·〉 and the Euclidean norm
‖ · ‖ =

√
〈·, ·〉.

This chapter is devoted to the study of the proximal mapping, which will be fun-
damental in many of the algorithms that will be explored later in the book. The
operator and its properties were first studied by Moreau, and hence it is also referred
to as “Moreau’s proximal mapping.”

6.1 Definition, Existence, and Uniqueness

Definition 6.1 (proximal mapping). Given a function f : E → (−∞,∞], the
proximal mapping of f is the operator given by

proxf (x) = argminu∈E

{
f(u) +

1

2
‖u− x‖2

}
for any x ∈ E.

We will often use the term “prox” instead of “proximal.” The mapping proxf
takes a vector x ∈ E and maps it into a subset of E, which might be empty, a
singleton, or a set with multiple vectors as the following example illustrates.

Example 6.2. Consider the following three functions from R to R:

g1(x) ≡ 0,

g2(x) =

⎧⎪⎨⎪⎩ 0, x 
= 0,

−λ, x = 0,

g3(x) =

⎧⎪⎨⎪⎩ 0, x 
= 0,

λ, x = 0,

129
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130 Chapter 6. The Proximal Operator
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Figure 6.1. The left and right images are the plots of the functions g2 and
g3, respectively, with λ = 0.5 from Example 6.2.

where λ > 0 is a given constant. The plots of the noncontinuous functions g2 and
g3 are given in Figure 6.1. The prox of g1 can computed as follows:

proxg1(x) = argminu∈R

{
g1(u) +

1

2
(u− x)2

}
= argminu∈R

{
1

2
(u− x)2

}
= {x}.

To compute the prox of g2, note that proxg2(x) = argminu∈Rg̃2(u, x), where

g̃2(u, x) ≡ g2(u) +
1

2
(u− x)2 =

⎧⎪⎨⎪⎩ −λ+ x2

2 , u = 0,

1
2 (u − x)2, u 
= 0.

For x 
= 0, the minimum of 1
2 (u − x)2 over R \ {0} is attained at u = x(
= 0) with

a minimal value of 0. Therefore, in this case, if 0 > −λ + x2

2 , then the unique

minimizer of g̃2(·, x) is u = 0, and if 0 < −λ + x2

2 , then u = x is the unique

minimizer of g̃2(·, x); finally, if 0 = −λ + x2

2 , then 0 and x are the two minimizers
g̃2(·, x). When x = 0, the minimizer of g̃2(·, 0) is u = 0. To conclude,

proxg2(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{0}, |x| <

√
2λ,

{x}, |x| >
√
2λ,

{0, x}, |x| =
√
2λ.

Similar arguments show that

proxg3(x) =

⎧⎪⎨⎪⎩ {x}, x 
= 0,

∅, x = 0.

The next theorem, called the first prox theorem, states that if f is proper closed
and convex, then proxf (x) is always a singleton, meaning that the prox exists and
is unique. This is the reason why in the last example only g1, which was proper
closed and convex, had a unique prox at any point.
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6.2. First Set of Examples of Proximal Mappings 131

Theorem 6.3 (first prox theorem). Let f : E → (−∞,∞] be a proper closed
and convex function. Then proxf (x) is a singleton for any x ∈ E.

Proof. For any x ∈ E,

proxf (x) = argminu∈Ef̃(u,x), (6.1)

where f̃(u,x) ≡ f(u) + 1
2‖u − x‖2. The function f̃(·,x) is a closed and strongly

convex function as a sum of the closed and strongly convex function 1
2‖ · −x‖2

and the closed and convex function f (see Lemma 5.20 and Theorem 2.7(b)). The
properness of f̃(·,x) immediately follows from the properness of f . Therefore, by
Theorem 5.25(a), there exists a unique minimizer to the problem in (6.1).

When f is proper closed and convex, the last result shows that proxf (x) is
a singleton for any x ∈ E. In these cases, which will constitute the vast majority
of cases that will be discussed in this chapter, we will treat proxf as a single-
valued mapping from E to E, meaning that we will write proxf (x) = y and not
proxf (x) = {y}.

If we relax the assumptions in the first prox theorem and only require closed-
ness of the function, then it is possible to show under some coerciveness assumptions
that proxf (x) is never an empty set.

Theorem 6.4 (nonemptiness of the prox under closedness and coercive-
ness). Let f : E → (−∞,∞] be a proper closed function, and assume that the
following condition is satisfied:

the function u �→ f(u) +
1

2
‖u− x‖2 is coercive for any x ∈ E. (6.2)

Then proxf (x) is nonempty for any x ∈ E.

Proof. For any x ∈ E, the proper function h(u) ≡ f(u) + 1
2‖u − x‖2 is closed

as a sum of two closed functions. Since by the premise of the theorem it is also
coercive, it follows by Theorem 2.14 (with S = E) that proxf (x), which consists of
the minimizers of h, is nonempty.

Example 6.2 actually gave an illustration of Theorem 6.4 since although both
g2 and g3 satisfy the coercivity assumption (6.2), only g2 was closed, and thus the
fact that proxg3(x) was empty for a certain value of x, as opposed to proxg2(x),
which was never empty, is not surprising.

6.2 First Set of Examples of Proximal Mappings
Equipped just with the definition of the proximal mapping, we will now compute
the proximal mapping of several proper closed and convex functions.
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132 Chapter 6. The Proximal Operator

6.2.1 Constant

If f ≡ c for some c ∈ R, then

proxf (x) = argminu∈E

{
c+

1

2
‖u− x‖2

}
= x.

Therefore,

proxf (x) = x

is the identity mapping.

6.2.2 Affine

Let f(x) = 〈a,x〉 + b, where a ∈ E and b ∈ R. Then

proxf (x) = argminu∈E

{
〈a,u〉+ b +

1

2
‖u− x‖2

}
= argminu∈E

{
〈a,x〉 + b− 1

2
‖a‖2 + 1

2
‖u− (x− a)‖2

}
= x− a.

Therefore,

proxf (x) = x− a

is a translation mapping.

6.2.3 Convex Quadratic

Let f : Rn → R be given by f(x) = 1
2x

TAx+bTx+ c, where A ∈ Sn+,b ∈ Rn, and
c ∈ R. The vector proxf (x) is the minimizer of the problem

min
u∈E

{
1

2
uTAu+ bTu+ c+

1

2
‖u− x‖2

}
.

The optimal solution of the last problem is attained when the gradient of the ob-
jective function vanishes:

Au+ b+ u− x = 0,

that is, when

(A+ I)u = x− b,

and hence

proxf (x) = (A+ I)−1(x− b).
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6.2. First Set of Examples of Proximal Mappings 133

6.2.4 One-Dimensional Examples

The following lemma contains several prox computations of one-dimensional func-
tions.

Lemma 6.5. The following are pairs of proper closed and convex functions and
their prox mappings:

g1(x) =

⎧⎪⎨⎪⎩ μx, x ≥ 0,

∞, x < 0,
proxg1(x) = [x− μ]+,

g2(x) = λ|x|, proxg2(x) = [|x| − λ]+sgn(x),

g3(x) =

⎧⎪⎨⎪⎩ λx3, x ≥ 0,

∞, x < 0,
proxg3(x) =

−1+
√

1+12λ[x]+
6λ ,

g4(x) =

⎧⎪⎨⎪⎩ −λ log x, x > 0,

∞, x ≤ 0,
proxg4(x) =

x+
√
x2+4λ
2 ,

g5(x) = δ[0,η]∩R(x), proxg5(x) = min{max{x, 0}, η},

where λ ∈ R+, η ∈ [0,∞], and μ ∈ R.

Proof. The proofs repeatedly use the following trivial arguments: (i) if f ′(u) = 0
for a convex function f , then u must be one of its minimizers; (ii) if a minimizer of
a convex function exists and is not attained at any point of differentiability, then it
must be attained at a point of nondifferentiability.

[prox of g1] By definition, proxg1(x) is the minimizer of the function

f(u) =

⎧⎪⎨⎪⎩ ∞, u < 0,

f1(u), u ≥ 0,

where f1(u) = μu+ 1
2 (u−x)2. First note that f ′1(u) = 0 if and only if u = x−μ. If

x > μ, then f ′(x−μ) = f ′1(x−μ) = 0, implying that in this case proxg1(x) = x−μ.
Otherwise, if x ≤ μ, the minimizer of f is not attained at a point of differentiability,
meaning that it has to be attained at 0, which is the only point of nondifferentiability
in the domain of f , so that proxg1(x) = 0.

[prox of g2] proxg2(x) is the minimizer of the function

h(u) =

⎧⎪⎨⎪⎩ h1(u) ≡ λu+ 1
2 (u− x)2, u > 0,

h2(u) ≡ −λu+ 1
2 (u− x)2, u ≤ 0.

If the minimizer is attained at u > 0, then 0 = h′1(u) = λ + u − x, meaning that
u = x− λ. Therefore, if x > λ, then proxg2(x) = x− λ. The same argument shows
that if x < −λ, then proxg2(x) = x+λ. If |x| ≤ λ, then proxg2(x) must be the only
point of nondifferentiability of h, namely, 0.
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134 Chapter 6. The Proximal Operator

[prox of g3] proxg3(x) is the minimizer of the function

s(u) =

⎧⎪⎨⎪⎩ λu3 + 1
2 (u− x)2, u ≥ 0,

∞, u < 0.

If the minimizer is positive, then ũ = proxg3(x) satisfies s
′(ũ) = 0, that is,

3λũ2 + ũ− x = 0.

The above equation has a positive root if and only if x > 0, and in this case the

(unique) positive root is proxg3(x) = ũ = −1+
√
1+12λx
6λ . If x ≤ 0, the minimizer of s

is attained at the only point of nondifferentiability of s in its domain, that is, at 0.
[prox of g4] ũ = proxg4(x) is a minimizer over R++ of

t(u) = −λ logu+
1

2
(u− x)2,

which is determined by the condition that the derivative vanishes:

−λ
ũ
+ (ũ− x) = 0,

that is,

ũ2 − ũx− λ = 0.

Therefore (taking the positive root),

proxg4(x) = ũ =
x+

√
x2 + 4λ

2
.

[prox of g5] We will first assume that η < ∞. Note that ũ = proxg5(x) is the
minimizer of

w(u) =
1

2
(u− x)2

over [0, η]. The minimizer of w over R is u = x. Therefore, if 0 ≤ x ≤ η, then
ũ = x. If x < 0, then w is increasing over [0, η], and hence ũ = 0. Finally, if x > η,
then w is decreasing over [0, η], and thus ũ = η. To conclude,

proxg5(x) = ũ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, 0 ≤ x ≤ η,

0, x < 0,

η, x > η,

= min{max{x, 0}, η}.

For η = ∞, g5(x) = δ[0,∞)(x), and in this case, g5 is identical to g1 with μ = 0,
implying that proxg5(x) = [x]+, which can also be written as

proxg5(x) = min{max{x, 0},∞}.
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6.3. Prox Calculus Rules 135

6.3 Prox Calculus Rules
In this section we gather several important results on the calculus of proximal
mappings. Note that some of the results do not require any convexity/closedness
assumptions.

Theorem 6.6 (prox of separable functions). Suppose that f : E1 × E2 × · · · ×
Em → (−∞,∞] is given by

f(x1,x2, . . . ,xm) =

m∑
i=1

fi(xi) for any xi ∈ Ei, i = 1, 2, . . . ,m.

Then for any x1 ∈ E1,x2 ∈ E2, . . . ,xm ∈ Em,

proxf (x1,x2, . . . ,xm) = proxf1(x1)× proxf2(x2)× · · · × proxfm(xm). (6.3)

Proof. Formula (6.3) is a result of the following chain of equalities:

proxf (x1,x2, . . . ,xm) = argminy1,y2,...,ym

m∑
i=1

[
1

2
‖yi − xi‖2 + fi(yi)

]

=

m∏
i=1

argminyi

[
1

2
‖yi − xi‖2 + fi(yi)

]

=

m∏
i=1

proxfi(xi).

Remark 6.7. If f : Rn → R is proper closed convex and separable,

f(x) =

n∑
i=1

fi(xi),

with fi being proper closed and convex univariate functions, then the result of The-
orem 6.6 can be rewritten as

proxf (x) = (proxfi(xi))
n
i=1.

Example 6.8 (l1-norm). Suppose that g : Rn → R is given by g(x) = λ‖x‖1,
where λ > 0. Then

g(x) =

n∑
i=1

ϕ(xi), (6.4)

where ϕ(t) = λ|t|. By Lemma 6.5 (computation of proxg2), proxϕ(s) = Tλ(s), where
Tλ is defined as

Tλ(y) = [|y| − λ]+sgn(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y − λ, y ≥ λ,

0, |y| < λ,

y + λ, y ≤ −λ.
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136 Chapter 6. The Proximal Operator

Figure 6.2. The soft thresholding function T1.

The function Tλ is called the soft thresholding function, and its description is given
in Figure 6.2.

By Theorem 6.6,
proxg(x) = (Tλ(xj))nj=1.

We will expand the definition of the soft thresholding function for vectors by ap-
plying it componentwise, that is, for any x ∈ Rn,

Tλ(x) ≡ (Tλ(xj))nj=1 = [|x| − λe]+ � sgn(x).

In this notation,

proxg(x) = Tλ(x).

Example 6.9 (negative sum of logs). Let g : Rn → (−∞,∞] be given by

g(x) =

⎧⎪⎨⎪⎩ −λ
∑n
j=1 log xj , x > 0,

∞ else,

where λ > 0. Then g(x) =
∑n
i=1 ϕ(xi), where

ϕ(t) =

⎧⎪⎨⎪⎩ −λ log t, t > 0,

∞, t < 0.

By Lemma 6.5 (computation of proxg4),

proxϕ(s) =
s+

√
s2 + 4λ

2
.

Thus, by Theorem 6.6,
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6.3. Prox Calculus Rules 137

proxg(x) = (proxϕ(xj))
n
j=1 =

⎛⎝xj +
√
x2j + 4λ

2

⎞⎠n

j=1

.

Example 6.10 (l0-norm). Let f : Rn → R be given by f(x) = λ‖x‖0, where
λ > 0 and ‖x‖0 = #{i : xi 
= 0} is the l0-norm discussed in Example 2.11. For any
x ∈ Rn,

f(x) =

n∑
i=1

I(xi),

where

I(t) =

⎧⎪⎨⎪⎩ λ, t 
= 0,

0, t = 0.

Note that I(·) = J(·) + λ, where

J(t) =

⎧⎪⎨⎪⎩ 0, t 
= 0,

−λ, t = 0,

and that by Example 6.2,

proxJ(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{0}, |s| <

√
2λ,

{s}, |s| >
√
2λ,

{0, s}, |s| =
√
2λ.

(6.5)

We can write the above as proxJ(s) = H√2λ(s), where Hα is the so-called hard
thresholding operator defined by

Hα(s) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{0}, |s| < α,

{s}, |s| > α,

{0, s}, |s| = α.

The operators proxJ and proxI are the same since for any s ∈ R,

proxI(s) = argmint

{
I(t) +

1

2
(t− s)2

}
= argmint

{
J(t) + λ+

1

2
(t− s)2

}
= argmint

{
J(t) +

1

2
(t− s)2

}
= proxJ (s).
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138 Chapter 6. The Proximal Operator

Thus, invoking Theorem 6.6, it follows that27

proxg(x) = H√2λ(x1)× H√2λ(x2)× · · · × H√2λ(xn).

Theorem 6.11 (scaling and translation). Let g : E → (−∞,∞] be a proper
function. Let λ 
= 0 and a ∈ E. Define f(x) = g(λx+ a). Then

proxf (x) =
1

λ

[
proxλ2g(λx + a)− a

]
. (6.6)

Proof. By definition of the prox,

proxf (x) = argminu

{
f(u) +

1

2
‖u− x‖2

}
= argminu

{
g(λu+ a) +

1

2
‖u− x‖2

}
. (6.7)

Making the change of variables

z = λu+ a, (6.8)

the objective function in the minimization problem (6.7) becomes

g(z) +
1

2

∥∥∥∥ 1λ(z− a) − x

∥∥∥∥2 =
1

λ2

[
λ2g(z) +

1

2
‖z− (λx+ a)‖2

]
. (6.9)

The minimizer of (6.9) is z = proxλ2g(λx + a), and hence by (6.8), it follows that
(6.6) holds.

Theorem 6.12 (prox of λg(·/λ)). Let g : E → (−∞,∞] be proper, and let λ 
= 0.
Define f(x) = λg(x/λ). Then

proxf (x) = λproxg/λ(x/λ).

Proof. Note that

proxf (x) = argminu

{
f(u) +

1

2
‖u− x‖2

}
= argminu

{
λg
(u
λ

)
+

1

2
‖u− x‖2

}
.

27Actually, proxg(x) should be a subset of Rn, meaning the space of n-length column vectors,
but here we practice some abuse of notation and represent proxg(x) as a set of n-length row
vectors.
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6.3. Prox Calculus Rules 139

Making the change of variables z = u
λ , we can continue to write

proxf (x) = λargminz

{
λg(z) +

1

2
‖λz− x‖2

}
= λargminz

{
λ2
[
g(z)

λ
+

1

2

∥∥∥z− x

λ

∥∥∥2]}
= λargminz

{
g(z)

λ
+

1

2

∥∥∥z− x

λ

∥∥∥2}
= λproxg/λ(x/λ).

Theorem 6.13 (quadratic perturbation). Let g : E → (−∞,∞] be proper, and
let f(x) = g(x) + c

2‖x‖2 + 〈a,x〉 + γ, where c > 0, a ∈ E, and γ ∈ R. Then

proxf (x) = prox 1
c+1 g

(
x− a

c+ 1

)
.

Proof. Follows by the following simple computation:

proxf (x) = argminu

{
f(u) +

1

2
‖u− x‖2

}
= argminu

{
g(u) +

c

2
‖u‖2 + 〈a,u〉+ γ +

1

2
‖u− x‖2

}
= argminu

{
g(u) +

c+ 1

2

∥∥∥∥u−
(
x− a

c+ 1

)∥∥∥∥2
}

= prox 1
c+1 g

(
x− a

c+ 1

)
.

Example 6.14. Consider the function f : R → (−∞,∞] given for any x ∈ R by

f(x) =

⎧⎪⎨⎪⎩ μx, 0 ≤ x ≤ α,

∞ else,

where μ ∈ R and α ∈ [0,∞]. To compute the prox of f , note first that f can be
represented as

f(x) = δ[0,α]∩R(x) + μx.

By Lemma 6.5 (computation of proxg5), proxδ[0,α]∩R
(x) = min{max{x, 0}, α}. There-

fore, using Theorem 6.13 with c = 0, a = μ, γ = 0, we obtain that for any x ∈ R,

proxf (x) = proxg(x− μ) = min{max{x− μ, 0}, α}.
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140 Chapter 6. The Proximal Operator

Unfortunately, there is no useful calculus rule for computing the prox mapping
of a composition of a function with a general affine mapping. However, if the
associated linear transformation satisfies a certain orthogonality condition, such a
rule exists.

Theorem 6.15 (composition with an affine mapping). Let g : Rm →
(−∞,∞] be a proper closed convex function, and let f(x) = g(A(x) + b), where
b ∈ Rm and A : V → Rm is a linear transformation satisfying28 A ◦ AT = αI for
some constant α > 0. Then for any x ∈ V,

proxf (x) = x+
1

α
AT (proxαg(A(x) + b)− A(x) − b).

Proof. By definition, proxf (x) is the optimal solution of

min
u∈V

{
f(u) +

1

2
‖u− x‖2

}
,

which can be rewritten as

min
u∈V

{
g(A(u) + b) +

1

2
‖u− x‖2

}
.

The above problem can be formulated as the following constrained problem:

minu∈V,z∈Rm g(z) +
1

2
‖u− x‖2

s.t. z = A(u) + b.
(6.10)

Denote the optimal solution of (6.10) by (z̃, ũ) (the existence and uniqueness of z̃
and ũ follow by the underlying assumption that g is proper closed and convex).
Note that ũ = proxf (x). Fixing z = z̃, we obtain that ũ is the optimal solution of

minu∈V
1

2
‖u− x‖2

s.t. A(u) = z̃− b.
(6.11)

Since strong duality holds for problem (6.11) (see Theorem A.1), by Theorem A.2,
it follows that there exists y ∈ Rm for which

ũ ∈ argminu∈V

{
1

2
‖u− x‖2 + 〈y,A(u) − z̃+ b〉

}
(6.12)

A(ũ) = z̃− b. (6.13)

By (6.12),

ũ = x− AT (y). (6.14)

28The identity transformation I was defined in Section 1.10.
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6.3. Prox Calculus Rules 141

Substituting this expression of ũ into (6.13), we obtain

A(x− AT (y)) = z̃− b,

and hence, using the assumption that A ◦ AT = αI,

αy = A(x) + b− z̃,

which, combined with (6.14), yields an explicit expression for ũ = proxf (x) in terms
of z̃:

proxf (x) = ũ = x+
1

α
AT (z̃− A(x) − b). (6.15)

Substituting u = ũ in the minimization problem (6.10), we obtain that z̃ is given
by

z̃ = argminz∈Rm

{
g(z) +

1

2

∥∥∥∥x+
1

α
AT (z− A(x)− b)− x

∥∥∥∥2
}

= argminz∈Rm

{
g(z) +

1

2α2
‖AT (z− A(x) − b)‖2

}
(∗)
= argminz∈Rm

{
αg(z) +

1

2
‖z− A(x)− b‖2

}
= proxαg(A(x) + b),

where the equality (∗) uses the assumption that A ◦ AT = αI. Plugging the
expression for z̃ into (6.15) produces the desired result.

Example 6.16. Let g : E → (−∞,∞] be proper closed and convex where E = Rd,
and let f : Em → (−∞,∞] be defined as

f(x1,x2, . . . ,xm) = g(x1 + x2 + · · ·+ xm).

The above can be written as f(x1,x2, . . . ,xm) = g(A(x1,x2, . . . ,xm)), where A :
E
m → E is the linear transformation

A(x1,x2, . . . ,xm) = x1 + x2 + · · ·+ xm.

Obviously, the adjoint operator AT : E → E
m is given by

AT (x) = (x,x, . . . ,x),

and for any x ∈ E,

A(AT (x)) = mx.

Thus, the conditions of Theorem 6.15 are satisfied with α = m and b = 0, and
consequently, for any (x1,x2, . . . ,xm) ∈ Em,
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142 Chapter 6. The Proximal Operator

proxf (x1,x2, . . . ,xm)j = xj+
1

m

(
proxmg

(
m∑
i=1

xi

)
−

m∑
i=1

xi

)
, j = 1, 2, . . . ,m.

Example 6.17. Let f : Rn → R be given by f(x) = |aTx|, where a ∈ Rn \ {0}.
We can write f as f(x) = g(aTx), where g(t) = |t|. By Lemma 6.5 (proxg2 com-
putation), proxλg = Tλ, with Tλ(x) = [|x| − λ]+sgn(x) being the soft thresholding
operator defined in Example 6.8. Invoking Theorem 6.15 with α = ‖a‖2, b = 0,
and A defined as the transformation x �→ aTx, we obtain that

proxf (x) = x+
1

‖a‖2 (T‖a‖2(a
Tx)− aTx)a.

Theorem 6.18 (norm composition). Let f : E → R be given by f(x) = g(‖x‖),
where g : R → (−∞,∞] is a proper closed and convex function satisfying dom(g) ⊆
[0,∞). Then

proxf (x) =

⎧⎪⎨⎪⎩ proxg(‖x‖) x
‖x‖ , x 
= 0,

{u ∈ E : ‖u‖ = proxg(0)}, x = 0.
(6.16)

Proof. By definition, proxf (0) is the set of minimizers of the problem

min
u∈E

{
f(u) +

1

2
‖u‖2

}
= min

u∈E

{
g(‖u‖) + 1

2
‖u‖2

}
.

Making the change of variables w = ‖u‖, the problem reduces to (recalling that
dom(g) ⊆ [0,∞))

min
w∈R

{
g(w) +

1

2
w2

}
.

The optimal set of the above problem is proxg(0), and hence proxf (0) is the set
of vectors u satisfying ‖u‖ = proxg(0). We will now compute proxf (x) for x 
= 0.
The optimization problem associated with the prox computation can be rewritten
as the following double minimization problem:

min
u∈E

{
g(‖u‖) + 1

2
‖u− x‖2

}
= min

u∈E

{
g(‖u‖) + 1

2
‖u‖2 − 〈u,x〉+ 1

2
‖x‖2

}
= min
α∈R+

min
u∈E:‖u‖=α

{
g(α) +

1

2
α2 − 〈u,x〉+ 1

2
‖x‖2

}
.
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6.3. Prox Calculus Rules 143

Using the Cauchy–Schwarz inequality, it is easy to see that the minimizer of the
inner minimization problem is

u = α
x

‖x‖ , (6.17)

and the corresponding optimal value is

g(α) +
1

2
α2 − α‖x‖+ 1

2
‖x‖2 = g(α) +

1

2
(α − ‖x‖)2.

Therefore, proxf (x) is given by u in (6.17) with α given by

α = argminα∈R+

{
g(α) +

1

2
(α− ‖x‖)2

}
= argminα∈R

{
g(α) +

1

2
(α− ‖x‖)2

}
= proxg(‖x‖),

where the second equality is due to the assumption that dom(g) ⊆ [0,∞). Thus,
proxf (x) = proxg(‖x‖) x

‖x‖ .

Example 6.19 (prox of Euclidean norm). Let f : E → R be given by f(x) =
λ‖x‖, where λ > 0 and ‖ · ‖ is the underlying Euclidean norm (recall that in this
section we assume that the underlying space is Euclidean). Then f(x) = g(‖x‖),
where

g(t) =

⎧⎪⎨⎪⎩ λt, t ≥ 0,

∞, t < 0.

Then by Theorem 6.18, for any x ∈ E,

proxf (x) =

⎧⎪⎨⎪⎩ proxg(‖x‖) x
‖x‖ , x 
= 0,

{u ∈ E : ‖u‖ = proxg(0)}, x = 0.

By Lemma 6.5 (computation of proxg1), proxg(t) = [t − λ]+. Thus, proxg(0) = 0
and proxg(‖x‖) = [‖x‖ − λ]+, and therefore

proxf (x) =

⎧⎪⎨⎪⎩ [‖x‖ − λ]+
x
‖x‖ , x 
= 0,

0, x = 0.

Finally, we can write the above formula in the following compact form:

proxλ‖·‖(x) =

(
1− λ

max{‖x‖, λ}

)
x.
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144 Chapter 6. The Proximal Operator

Example 6.20 (prox of cubic Euclidean norm). Let f(x) = λ‖x‖3, where
λ > 0. Then f(x) = λg(‖x‖), where

g(t) =

⎧⎪⎨⎪⎩ t3, t ≥ 0,

∞, t < 0.

Then by Theorem 6.18, for any x ∈ R,

proxf (x) =

⎧⎪⎨⎪⎩ proxg(‖x‖) x
‖x‖ , x 
= 0,

{u ∈ E : ‖u‖ = proxg(0)}, x = 0.

By Lemma 6.5 (computation of proxg3), proxg(t) =
−1+

√
1+12λ[t]+
6λ . Therefore,

proxg(0) = 0 and

proxf (x) =

⎧⎪⎨⎪⎩
−1+

√
1+12λ‖x‖
6λ

x
‖x‖ , x 
= 0,

0, x = 0,

and thus

proxλ‖·‖3(x) =
2

1 +
√
1 + 12λ‖x‖

x.

Example 6.21 (prox of negative Euclidean norm). Let f : E → R be given
by f(x) = −λ‖x‖, where λ > 0. Since f is not convex, we do not expect the prox
to be a single-valued mapping. However, since f is closed, and since the function
u �→ f(u)+ 1

2‖u−x‖2 is coercive for any x ∈ E, it follows by Theorem 6.4 that the
set proxf (x) is always nonempty. To compute the prox, note that f(x) = g(‖x‖),
where

g(t) =

⎧⎪⎨⎪⎩ −λt, t ≥ 0,

∞, t < 0.

By Theorem 6.18, for any x ∈ R,

proxf (x) =

⎧⎪⎨⎪⎩ proxg(‖x‖) x
‖x‖ , x 
= 0,

{u ∈ E : ‖u‖ = proxg(0)}, x = 0.

By Lemma 6.5 (computation of proxg1), proxg(t) = [t+λ]+. Therefore, proxg(0) = λ
and
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6.3. Prox Calculus Rules 145

prox−λ‖·‖(x) =

⎧⎪⎨⎪⎩
(
1 + λ

‖x‖

)
x, x 
= 0,

{u : ‖u‖ = λ}, x = 0.

Example 6.22 (prox of absolute value over symmetric intervals). Consider
the function f : R → (−∞,∞] given by

f(x) =

⎧⎪⎨⎪⎩ λ|x|, |x| ≤ α,

∞ else,

where λ ∈ [0,∞) and α ∈ [0,∞]. Then f(x) = g(|x|), where

g(x) =

⎧⎪⎨⎪⎩ λx, 0 ≤ x ≤ α,

∞ else.

Thus, by Theorem 6.18, for any x,

proxf (x) =

⎧⎪⎨⎪⎩ proxg(|x|) x|x| , x 
= 0,

{u ∈ R : |u| = proxg(0)}, x = 0.
(6.18)

By Example 6.14, proxg(x) = min{max{x− λ, 0}, α}, which, combined with (6.18)
and the fact that x

|x| = sgn(x) for any x 
= 0, yields the formula

proxλ|·|+δ[−α,α]
(x) = min{max{|x| − λ, 0}, α}sgn(x).

Using the previous example, we can compute the prox of weighted l1-norms
over boxes.

Example 6.23 (prox of weighted l1 over a box). Consider the function f :
Rn → R given by

f(x) =

⎧⎪⎨⎪⎩
∑n
i=1 ωi|xi|, −α ≤ x ≤ α,

∞, else,

for any x ∈ Rn, where ω ∈ Rn+ and α ∈ [0,∞]n. Then f =
∑n

i=1 fi, where

fi(x) =

⎧⎪⎨⎪⎩ wi|x|, −αi ≤ x ≤ αi,

∞, else.
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146 Chapter 6. The Proximal Operator

Using Example 6.22 and invoking Theorem 6.6, we finally obtain that

proxf (x) = (min{max{|xi| − ωi, 0}, αi}sgn(xi))ni=1 .

The table below summarizes the main prox calculus rules discussed in this
section.

f(x) proxf (x) Assumptions Reference

∑m
i=1 fi(xi) proxf1 (x1)× · · · × proxfm (xm) Theorem 6.6

g(λx+ a) 1
λ

[
proxλ2g(λx+ a)− a

]
λ �= 0,a ∈ E, g

proper
Theorem 6.11

λg(x/λ) λproxg/λ(x/λ) λ �= 0, g proper Theorem 6.12

g(x)+ c
2
‖x‖2 +

〈a,x〉+ γ
prox 1

c+1
g(

x−a
c+1

) a ∈ E, c > 0,
γ ∈ R, g proper

Theorem 6.13

g(A(x) + b) x+ 1
α
AT (proxαg(A(x) + b)−A(x)− b) b ∈ Rm,

A : V → Rm,
g proper
closed convex,
A ◦ AT = αI,
α > 0

Theorem 6.15

g(‖x‖)
proxg(‖x‖) x

‖x‖ , x �= 0

{u : ‖u‖ = proxg(0)}, x = 0
g proper
closed convex,
dom(g) ⊆
[0,∞)

Theorem 6.18

6.4 Prox of Indicators—Orthogonal Projections

6.4.1 The First Projection Theorem

Let g : E → (−∞,∞] be given by g(x) = δC(x), where C is a nonempty set. Then

proxg(x) = argminu∈E

{
δC(u) +

1

2
‖u− x‖2

}
= argminu∈C‖u− x‖2 = PC(x).

Thus, the proximal mapping of the indicator function of a given set is the orthogonal
projection29 operator onto the same set.

Theorem 6.24. Let C ⊆ E be nonempty. Then proxδC (x) = PC(x) for any x ∈ E.

If C is closed and convex, in addition to being nonempty, the indicator function
δC is proper closed and convex, and hence by the first prox theorem (Theorem 6.3),
the orthogonal projection mapping (which coincides with the proximal mapping)
exists and is unique. This is the first projection theorem.

29The orthogonal projection operator was introduced in Example 3.31.
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6.4. Prox of Indicators—Orthogonal Projections 147

Theorem 6.25 (first projection theorem). Let C ⊆ E be a nonempty closed
convex set. Then PC(x) is a singleton for any x ∈ E.

6.4.2 First Examples in Rn

We begin by recalling30 several known expressions for the orthogonal projection
onto some basic subsets of Rn. Since the assumption made throughout the book is
that (unless otherwise stated) Rn is endowed with the dot product, and since the
standing assumption in this chapter is that the underlying space is Euclidean, it
follows that the endowed norm is the l2-norm.

Lemma 6.26 (projection onto subsets of Rn). Following are pairs of nonempty
closed and convex sets and their corresponding orthogonal projections:

nonnegative orthant C1 = Rn+, [x]+,

box C2 = Box[�,u], (min{max{xi, 
i}, ui})ni=1,

affine set C3 = {x ∈ Rn : Ax = b}, x−AT (AAT )−1(Ax− b),

l2 ball C4 = B‖·‖2 [c, r], c+ r
max{‖x−c‖2,r}(x − c),

half-space C5 = {x : aTx ≤ α}, x− [aTx−α]+
‖a‖2 a,

where � ∈ [−∞,∞)n,u ∈ (−∞,∞]n are such that � ≤ u, A ∈ R
m×n has full row

rank, b ∈ Rm, c ∈ Rn, r > 0, a ∈ Rn \ {0}, and α ∈ R.

Note that we extended the definition of box sets given in Section 1.7.1 to
include unbounded intervals, meaning that Box[�,u] is also defined when the com-
ponents of � might also take the value −∞, and the components of u might take
the value ∞. However, boxes are always subsets of Rn, and the formula

Box[�,u] = {x ∈ R
n : � ≤ x ≤ u}

still holds. For example, Box[0,∞e] = Rn+.

6.4.3 Projection onto the Intersection of a Hyperplane and a
Box

The next result develops an expression for the orthogonal projection onto another
subset of Rn—the intersection of an hyperplane and a box.

Theorem 6.27 (projection onto the intersection of a hyperplane and a
box). Let C ⊆ Rn be given by

C = Ha,b ∩ Box[�,u] = {x ∈ R
n : aTx = b, � ≤ x ≤ u},

where a ∈ Rn \{0}, b ∈ R,� ∈ [−∞,∞)n,u ∈ (−∞,∞]n. Assume that C 
= ∅. Then

PC(x) = PBox[�,u](x− μ∗a),

30The derivations of the orthogonal projection expressions in Lemma 6.26 can be found, for
example, in [10].
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148 Chapter 6. The Proximal Operator

where Box[�,u] = {y ∈ Rn : 
i ≤ yi ≤ ui, i = 1, 2, . . . , n} and μ∗ is a solution of the
equation

aTPBox[�,u](x− μa) = b. (6.19)

Proof. The orthogonal projection of x onto C is the unique optimal solution of

min
y

{
1

2
‖y − x‖22 : aTy = b, � ≤ y ≤ u

}
. (6.20)

A Lagrangian of the problem is

L(y;μ) =
1

2
‖y−x‖22+μ(aTy−b) =

1

2
‖y−(x−μa)‖22−

μ2

2
‖a‖22+μ(aTx−b). (6.21)

Since strong duality holds for problem (6.20) (see Theorem A.1), it follows by
Theorem A.2 that y∗ is an optimal solution of problem (6.20) if and only if there
exists μ∗ ∈ R (which will actually be an optimal solution of the dual problem) for
which

y∗ ∈ argmin�≤y≤uL(y;μ
∗), (6.22)

aTy∗ = b. (6.23)

Using the expression of the Lagrangian given in (6.21), the relation (6.22) can be
equivalently written as

y∗ = PBox[�,u](x− μ∗a).

The feasibility condition (6.23) can then be rewritten as

aTPBox[�,u](x− μ∗a) = b.

Remark 6.28. The projection onto the box Box[�,u] is extremely simple and is
done component-wise as described in Lemma 6.26. Note also that (6.19) actually
consists in finding a root of the nonincreasing function ϕ(μ) = aTPBox(x−μa)− b,
which is a task that can be performed efficiently even by simple procedures such as
bisection. The fact that ϕ is nonincreasing follows from the observation that ϕ(μ) =∑n

i=1 aimin{max{xi − μai, 
i}, ui} − b and the fact that μ �→ aimin{max{xi −
μai, 
i}, ui} is a nonincreasing function for any i.

A direct consequence of Theorem 6.27 is an expression for the orthogonal
projection onto the unit simplex.

Corollary 6.29 (orthogonal projection onto the unit simplex). For any
x ∈ Rn,

PΔn(x) = [x− μ∗e]+,

where μ∗ is a root of the equation

eT [x− μ∗e]+ − 1 = 0.
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6.4. Prox of Indicators—Orthogonal Projections 149

Proof. Invoking Theorem 6.27 with a = e, b = 1, 
i = 0, ui = ∞, i = 1, 2, . . . , n,
and noting that in this case PBox[�,u](x) = [x]+, the result follows.

In order to expend the variety of sets on which we will be able to find simple
expressions for the orthogonal projection mapping, in the next two subsections, we
will discuss how to project onto level sets and epigraphs.

6.4.4 Projection onto Level Sets

Theorem 6.30 (orthogonal projection onto level sets). Let C = Lev(f, α) =
{x ∈ E : f(x) ≤ α}, where f : E → (−∞,∞] is proper closed and convex, and
α ∈ R. Assume that there exists x̂ ∈ E for which f(x̂) < α. Then

PC(x) =

⎧⎪⎨⎪⎩ Pdom(f)(x), f(Pdom(f)(x)) ≤ α,

proxλ∗f (x) else,
(6.24)

where λ∗ is any positive root of the equation

ϕ(λ) ≡ f(proxλf (x)) − α = 0.

In addition, the function ϕ is nonincreasing.

Proof. The orthogonal projection of x onto C is an optimal solution of the problem

min
y∈E

{
1

2
‖y − x‖2 : f(y) ≤ α,y ∈ X

}
,

where X = dom(f). A Lagrangian of the problem is (λ ≥ 0)

L(y;λ) =
1

2
‖y − x‖2 + λf(y) − αλ. (6.25)

Since the problem is convex and satisfies Slater’s condition, strong duality holds (see
Theorem A.1), and therefore it follows by the optimality conditions in Theorem A.2
that y∗ is an optimal solution of problem (6.25) if and only if there exists λ∗ ∈ R+

for which

y∗ ∈ argminy∈XL(y;λ
∗), (6.26)

f(y∗) ≤ α, (6.27)

λ∗(f(y∗)− α) = 0. (6.28)

There are two cases. If PX(x) exists and f(PX(x)) ≤ α, then y∗ = PX(x), and
λ∗ = 0 is a solution to the system (6.26), (6.27), (6.28). Otherwise, if PX(x) does
not exist or f(PX(x)) > α, then λ∗ > 0, and in this case the system (6.26), (6.27),
(6.28) reduces to y∗ = proxλ∗f (x) and f(proxλ∗f (x)) = α, which yields the formula
(6.24).

To prove that ϕ is nonincreasing, recall that

proxλf (x) = argminy∈X

{
1

2
‖y− x‖2 + λ(f(y) − α)

}
.
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150 Chapter 6. The Proximal Operator

Take 0 ≤ λ1 < λ2. Then denoting v1 = proxλ1f (x) and v2 = proxλ2f (x), we have

1

2
‖v2 − x‖2 + λ2(f(v2)− α)

=
1

2
‖v2 − x‖2 + λ1(f(v2)− α) + (λ2 − λ1)(f(v2)− α)

≥ 1

2
‖v1 − x‖2 + λ1(f(v1)− α) + (λ2 − λ1)(f(v2)− α)

=
1

2
‖v1 − x‖2 + λ2(f(v1)− α) + (λ2 − λ1)(f(v2)− f(v1))

≥ 1

2
‖v2 − x‖2 + λ2(f(v2)− α) + (λ2 − λ1)(f(v2)− f(v1)).

Therefore, (λ2 − λ1)(f(v2) − f(v1)) ≤ 0. Since λ1 < λ2, we can conclude that
f(v2) ≤ f(v1). Finally,

ϕ(λ2) = f(v2)− α ≤ f(v1)− α = ϕ(λ1),

establishing the monotonicity of ϕ.

Remark 6.31. Note that in Theorem 6.30 f is assumed to be closed, but this
does not necessarily imply that dom(f) is closed. In cases where dom(f) is not
closed, it might happen that Pdom(f)(x) does not exist and formula (6.24) amounts
to PC(x) = proxλ∗f (x).

Example 6.32 (projection onto the intersection of a half-space and a box).
Consider the set

C = H−a,b ∩ Box[�,u] = {x ∈ R
n : aTx ≤ b, � ≤ x ≤ u},

where a ∈ Rn \ {0}, b ∈ R, � ∈ [−∞,∞)n and u ∈ (−∞,∞]n. Assume that C 
= ∅.
Then C = Lev(f, b), where f(x) = aTx+ δBox[�,u](x). For any λ > 0,

proxλf (x) = proxλaT (·)+δBox[�,u](·)(x)
(∗)
= proxδBox[�,u]

(x− λa) = PBox[�,u](x− λa),

where in the equality (∗) we used Theorem 6.13. Invoking Theorem 6.30, we obtain
the following formula for the projection on C:

PC(x) =

⎧⎪⎨⎪⎩ PBox[�,u](x), aTPBox[�,u](x) ≤ b,

PBox[�,u](x− λ∗a), aTPBox[�,u](x) > b,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = aTPBox[�,u](x − λa)− b.
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6.4. Prox of Indicators—Orthogonal Projections 151

Example 6.33 (projection onto the l1 ball). Let C = B‖·‖1 [0, α] = {x ∈ Rn :
‖x‖1 ≤ α}, where α > 0. Then C = Lev(f, α) with f(x) = ‖x‖1. The prox of
λf = λ‖ · ‖1 for any λ > 0 was computed in Example 6.8, where it was shown that

proxλf (x) = Tλ(x) for all x ∈ R
n

with Tλ being the soft thresholding operator given by Tλ(x) = [x− λe]+ � sgn(x).
Invoking Theorem 6.30, we obtain that

PB‖·‖1 [0,α]
(x) =

⎧⎪⎨⎪⎩ x, ‖x‖1 ≤ α,

Tλ∗(x), ‖x‖1 > α,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = ‖Tλ(x)‖1 − α.

The next example uses a generalization of the soft thresholding mapping,
which will be called the two-sided soft thresholding operator, and is defined for any
a,b ∈ (−∞,∞]n as

Sa,b(x) = (min{max{|xi| − ai, 0}, bi}sgn(xi))ni=1, x ∈ R
n.

Obviously,
Sλe,∞e = Tλ.

Here ∞e is the n-dimensional column vector whose elements are all ∞. A plot of
the function t �→ S1,2(t) is given in Figure 6.3.

0 5

0

1

2

3

Figure 6.3. The two-sided soft thresholding function t �→ S1,2(t) =
min{max{|t| − 1, 0}, 2}sgn(t).

Example 6.34 (projection onto the intersection of weighted l1 ball and a
box). Let C ⊆ Rn be given by

C =

{
x ∈ R

n :

n∑
i=1

ωi|xi| ≤ β,−α ≤ x ≤ α

}
,
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152 Chapter 6. The Proximal Operator

where ω ∈ Rn+, α ∈ [0,∞]n, and β ∈ R++. Then obviously C = Lev(f, β), where

f(x) = ωT |x|+ δBox[−α,α](x) =

⎧⎪⎨⎪⎩
∑n
i=1 ωi|xi|, −α ≤ x ≤ α,

∞ else

for any x ∈ Rn. By Example 6.23, for any λ > 0 and x ∈ Rn,

proxλf (x) = (min{max{|xi| − λωi, 0}, αi}sgn(xi))ni=1 = Sλω,α(x).

Therefore, invoking Theorem 6.30, we obtain that

PC(x) =

⎧⎪⎨⎪⎩ PBox[−α,α](x), ωT |PBox[−α,α](x)| ≤ β,

Sλ∗ω,α(x), ωT |PBox[−α,α](x)| > β,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = ωT |Sλω,α(x)| − β.

As a final illustration of Theorem 6.30, we give an example in which the
domain of f is not closed.

Example 6.35. Let
C =

{
x ∈ R

n
++ : Πni=1xi ≥ α

}
,

where α > 0. The key property that will allow us to compute the orthogonal
projection onto C is the fact that it can be rewritten as

C =

{
x ∈ R

n
++ : −

n∑
i=1

log xi ≤ − logα

}
.

Thus, C = Lev(f,− logα), where f : Rn → (−∞,∞] is the negative sum of logs
function:

f(x) =

⎧⎪⎨⎪⎩ −
∑n
i=1 log xi, x ∈ Rn++,

∞ else.

In Example 6.9 it was shown that for any x ∈ Rn,

proxλf (x) =

⎛⎝xj +
√
x2j + 4λ

2

⎞⎠n

j=1

.

We can now invoke Theorem 6.30 to obtain a formula (up to a single parameter
that can be found by a one-dimensional search) for the projection onto C, but there
is one issue that needs to be treated delicately. If x /∈ Rn++, meaning that it has at
least one nonpositive element, then PRn

++
(x) does not exist. In this case only the

second part of (6.24) is relevant, meaning that PC(x) = proxλ∗f (x). To conclude,
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6.4. Prox of Indicators—Orthogonal Projections 153

PC(x) =

⎧⎪⎪⎨⎪⎪⎩
x, x ∈ C,(
xj+

√
x2
j+4λ∗

2

)n
j=1

, x /∈ C,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = −
∑n
j=1 log

(
xj+

√
x2
j+4λ

2

)
+ logα.

6.4.5 Projection onto Epigraphs

We can use Theorem 6.30 to prove a theorem on the projection onto epigraphs of
convex functions.

Theorem 6.36 (orthogonal projection onto epigraphs). Let

C = epi(g) = {(x, t) ∈ E× R : g(x) ≤ t},

where g : E → R is convex. Then

PC((x, s)) =

⎧⎪⎨⎪⎩ (x, s), g(x) ≤ s,

(proxλ∗g(x), s+ λ∗), g(x) > s,

where λ∗ is any positive root of the function

ψ(λ) = g(proxλg(x)) − λ− s.

In addition, ψ is nonincreasing.

Proof. Define f : E× R → R as f(x, t) ≡ g(x)− t. By definition of the prox,

proxλf (x, s) = argminy,t

{
1

2
‖y − x‖2 + 1

2
(t− s)2 + λf(y, t)

}
= argminy,t

{
1

2
‖y − x‖2 + 1

2
(t− s)2 + λg(y) − λt

}
.

The above problem is separable in y and t, and thus

proxλf (x, s) =

(
argminy

{
1

2
‖y− x‖2 + λg(y)

}
, argmint

{
1

2
(t− s)2 − λt

})
=
(
proxλg(x), proxλh(s)

)
,

where h(t) ≡ −t. Since λh is linear, then by Section 6.2.2, proxλh(z) = z + λ for
any z ∈ R. Thus,

proxλf (x, s) =
(
proxλg(x), s+ λ

)
.
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154 Chapter 6. The Proximal Operator

Since epi(g) = Lev(f, 0), we can invoke Theorem 6.30 (noting that dom(f) = E)
and obtain that

PC((x, s)) =

⎧⎪⎨⎪⎩ (x, s), g(x) ≤ s,

(proxλ∗g(x), s+ λ), g(x) > s,

where λ∗ is any positive root of the function

ψ(λ) = g(proxλg(x)) − λ− s,

which by Theorem 6.30 is nonincreasing.

Example 6.37 (projection onto the Lorentz cone). Consider the Lorentz cone,
which is given by Ln = {(x, t) ∈ Rn × R : ‖x‖2 ≤ t}. We will show that for any
(x, s) ∈ Rn × R,

PLn(x, s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
‖x‖2+s
2‖x‖2 x, ‖x‖2+s2

)
, ‖x‖2 ≥ |s|,

(0, 0), s < ‖x‖2 < −s,

(x, s), ‖x‖2 ≤ s.

To show the above,31 we invoke Theorem 6.36 to obtain the formula

PLn((x, s)) =

⎧⎪⎨⎪⎩ (x, s), ‖x‖2 ≤ s,

(proxλ∗‖·‖2(x), s+ λ∗), ‖x‖2 > s,

where λ∗ is any positive root of the nonincreasing function

ψ(λ) = ‖proxλ‖·‖2(x)‖2 − λ− s. (6.29)

Let (x, s) ∈ Rn × R be such that ‖x‖2 > s. Recall that by Example 6.19,

proxλ‖·‖2(x) =

[
1− λ

max{‖x‖2, λ}

]
+

x.

Plugging the above into the expression of ψ in (6.29) yields

ψ(λ) =

⎧⎪⎨⎪⎩ ‖x‖2 − 2λ− s, λ ≤ ‖x‖2,

−λ− s, λ ≥ ‖x‖2.

The unique positive root λ∗ of the piecewise linear function ψ is

λ∗ =

⎧⎪⎨⎪⎩
‖x‖2−s

2 , ‖x‖2 ≥ −s,

−s, ‖x‖2 < −s.

31Actually, the formula for PC(x) when ‖x‖2 = s appears twice in the formula, but in both
cases it amounts to (x, s).
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6.4. Prox of Indicators—Orthogonal Projections 155

Thus, in the case ‖x‖2 > s (noting that ‖x‖2 ≥ −s corresponds to the case where
‖x‖2 ≥ λ∗ and ‖x‖2 < −s corresponds to ‖x‖2 ≤ λ∗),

(proxλ∗‖·‖2(x), s + λ∗) =

([
1− λ∗

max{‖x‖2, λ∗}

]
+

x, s+ λ∗

)
,

=

⎧⎪⎨⎪⎩
([

1− ‖x‖2−s
2‖x‖2

]
+
x, ‖x‖2+s2

)
, ‖x‖2 ≥ −s,

(0, 0), ‖x‖2 < −s.

=

⎧⎪⎨⎪⎩
(
‖x‖2+s
2‖x‖2 x, ‖x‖2+s2

)
, ‖x‖2 ≥ −s,

(0, 0), ‖x‖2 < −s.

Recalling that ‖x‖2 > s, we have thus established that PLn(x, s) = (0, 0) when
s < ‖x‖2 < −s and that whenever (x, s) satisfies ‖x‖2 > s and ‖x‖2 ≥ −s, the
formula

PLn(x, s) =

(
‖x‖2 + s

2‖x‖2
x,

‖x‖2 + s

2

)
(6.30)

holds. The result now follows by noting that

{(x, s) : ‖x‖2 ≥ |s|} = {(x, s) : ‖x‖2 > s, ‖x‖2 ≥ −s} ∪ {(x, s) : ‖x‖2 = s},

and that formula (6.30) is trivial for the case ‖x‖2 = s (amounts to PLn(x, s) =
(x, s)).

Example 6.38 (projection onto the epigraph of the l1-norm). Let

C = {(y, t) ∈ R
n × R : ‖y‖1 ≤ t}.

Invoking Theorem 6.36 and recalling that for any λ > 0, proxλ‖·‖1 = Tλ, where Tλ
is the soft thresholding operator (see Example 6.8), it follows that

PC((x, s)) =

⎧⎪⎨⎪⎩ (x, s), ‖x‖1 ≤ s,

(Tλ∗(x), s+ λ∗), ‖x‖1 > s,

where λ∗ is any positive root of the nonincreasing function

ϕ(λ) = ‖Tλ(x)‖1 − λ− s.

6.4.6 Summary of Orthogonal Projection Computations

Table 6.1 describes all the examples of orthogonal projection computations onto
subsets of Rn and Rn × R that were discussed so far.
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156 Chapter 6. The Proximal Operator

Table 6.1. The following notation is used in the table. [x]+ is the non-
negative part of x, Tλ(y) = ([|yi| − λ]+sgn(yi))

n
i=1, and Sa,b(x) = (min{max{|xi| −

ai, 0}, bi}sgn(xi))ni=1.

set (C) PC(x) Assumptions Reference

Rn
+ [x]+ − Lemma 6.26

Box[�,u] PC(x)i = min{max{xi, 	i}, ui} 	i ≤ ui Lemma 6.26

B‖·‖2 [c, r] c+ r
max{‖x−c‖2,r} (x− c) c ∈ Rn, r > 0 Lemma 6.26

{x : Ax = b} x−AT (AAT )−1(Ax − b) A ∈ Rm×n,
b ∈ Rm,
A full row rank

Lemma 6.26

{x : aTx ≤ b} x− [aTx−b]+
‖a‖2 a 0 �= a ∈

Rn, b ∈ R

Lemma 6.26

Δn [x − μ∗e]+ where μ∗ ∈ R satisfies
eT [x− μ∗e]+ = 1

Corollary 6.29

Ha,b ∩ Box[�,u] PBox[�,u](x − μ∗a) where μ∗ ∈ R

satisfies aTPBox[�,u](x− μ∗a) = b

a ∈ Rn \ {0},
b ∈ R

Theorem 6.27

H−
a,b ∩ Box[�,u]

⎧⎪⎨
⎪⎩

PBox[�,u](x), aTvx ≤ b,

PBox[�,u](x− λ∗a), aTvx > b,

vx = PBox[�,u](x),

aTPBox[�,u](x− λ∗a) = b, λ∗ > 0

a ∈ Rn \ {0},
b ∈ R

Example 6.32

B‖·‖1 [0, α]

⎧⎪⎨
⎪⎩

x, ‖x‖1 ≤ α,

Tλ∗ (x), ‖x‖1 > α,

‖Tλ∗ (x)‖1 = α, λ∗ > 0

α > 0 Example 6.33

{x : ωT |x| ≤ β,

−α ≤ x ≤ α}

⎧⎪⎨
⎪⎩

vx, ωT |vx| ≤ β,

Sλ∗ω,α(x), ωT |vx| > β,

vx = PBox[−α,α](x),

ωT |Sλ∗ω,α(x)| = β, λ∗ > 0

ω ∈ Rn
+, α ∈

[0,∞]n, β ∈
R++

Example 6.34

{x > 0 : Πxi ≥ α}

⎧⎪⎪⎨
⎪⎪⎩

x, x ∈ C,(
xj+

√
x2
j+4λ∗

2

)n

j=1

, x /∈ C,

Πn
j=1

(
(xj +

√
x2j + 4λ∗)/2

)
=

α, λ∗ > 0

α > 0 Example 6.35

{(x, s) : ‖x‖2 ≤ s}

( ‖x‖2+s
2‖x‖2 x,

‖x‖2+s
2

)
if ‖x‖2 ≥ |s|

(0, 0) if s < ‖x‖2 < −s,

(x, s) if ‖x‖2 ≤ s.

Example 6.37

{(x, s) : ‖x‖1 ≤ s}

⎧⎪⎨
⎪⎩

(x, s), ‖x‖1 ≤ s,

(Tλ∗ (x), s+ λ∗), ‖x‖1 > s,

‖Tλ∗ (x)‖1 − λ∗ − s = 0, λ∗ > 0

Example 6.38
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6.5. The Second Prox Theorem 157

6.5 The Second Prox Theorem
We can use Fermat’s optimality condition (Theorem 3.63) in order to prove the
second prox theorem.

Theorem 6.39 (second prox theorem). Let f : E → (−∞,∞] be a proper
closed and convex function. Then for any x,u ∈ E, the following three claims are
equivalent:

(i) u = proxf (x).

(ii) x− u ∈ ∂f(u).

(iii) 〈x− u,y − u〉 ≤ f(y)− f(u) for any y ∈ E.

Proof. By definition, u = proxf (x) if and only if u is the minimizer of the problem

min
v

{
f(v) +

1

2
‖v − x‖2

}
,

which, by Fermat’s optimality condition (Theorem 3.63) and the sum rule of sub-
differential calculus (Theorem 3.40), is equivalent to the relation

0 ∈ ∂f(u) + u− x. (6.31)

We have thus shown the equivalence between claims (i) and (ii). Finally, by the
definition of the subgradient, the membership relation of claim (ii) is equivalent to
(iii).

A direct consequence of the second prox theorem is that for a proper closed
and convex function, x = proxf (x) if and only x is a minimizer of f .

Corollary 6.40. Let f be a proper closed and convex function. Then x is a
minimizer of f if and only if x = proxf (x).

Proof. x is a minimizer of f if and only if 0 ∈ ∂f(x), that is, if and only if
x−x ∈ ∂f(x), which by the second prox theorem (equivalence between (i) and (ii))
is the same as x = proxf (x).

When f = δC , with C being a nonempty closed and convex set, the equivalence
between claims (i) and (iii) in the second prox theorem amounts to the second
projection theorem.

Theorem 6.41 (second projection theorem). Let C ⊆ E be a nonempty
closed and convex set. Let u ∈ C. Then u = PC(x) if and only if

〈x − u,y − u〉 ≤ 0 for any y ∈ C.

Another rather direct result of the second prox theorem is the firm nonexpan-
sivity of the prox operator.
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158 Chapter 6. The Proximal Operator

Theorem 6.42 (firm nonexpansivity of the prox operator). Let f be a proper
closed and convex function. Then for any x,y ∈ E,

(a) (firm nonexpansivity)

〈x− y, proxf (x)− proxf (y)〉 ≥ ‖proxf (x) − proxf (y)‖2.

(b) (nonexpansivity)

‖proxf (x) − proxf (y)‖ ≤ ‖x− y‖.

Proof. (a) Denoting u = proxf (x),v = proxf (y), by the equivalence of (i) and (ii)
in the second prox theorem (Theorem 6.39), it follows that

x− u ∈ ∂f(u),y − v ∈ ∂f(v).

Thus, by the subgradient inequality,

f(v) ≥ f(u) + 〈x− u,v − u〉,
f(u) ≥ f(v) + 〈y − v,u− v〉.

Summing the above two inequalities, we obtain

0 ≥ 〈y − x+ u− v,u− v〉,

which is the same as
〈x− y,u− v〉 ≥ ‖u− v‖2,

that is,
〈x− y, proxf (x)− proxf (y)〉 ≥ ‖proxf (x) − proxf (y)‖2.

(b) If proxf (x) = proxf (y), then the inequality is obvious. Assume that
proxf (x) 
= proxf (y). Using (a) and the Cauchy–Schwarz inequality, it follows that

‖proxf (x) − proxf (y)‖2 ≤ 〈proxh(x) − proxh(y),x − y〉
≤ ‖proxh(x) − proxh(y)‖ · ‖x− y‖.

Dividing by ‖proxh(x) − proxh(y)‖, the desired result is established.

The following result shows how to compute the prox of the distance function
to a nonempty closed and convex set. The proof is heavily based on the second
prox theorem.

Lemma 6.43 (prox of the distance function). Let C ⊆ E be a nonempty,
closed, and convex set. Let λ > 0. Then for any x ∈ E,

proxλdC (x) =

⎧⎪⎨⎪⎩ (1− θ)x+ θPC(x), dC(x) > λ,

PC(x), dC(x) ≤ λ,
(6.32)
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6.5. The Second Prox Theorem 159

where32

θ =
λ

dC(x)
. (6.33)

Proof. Let u = proxλdC (x). By the second prox theorem (Theorem 6.39),

x− u ∈ λ∂dC(u). (6.34)

We will split the analysis into two cases.

Case I. u /∈ C. By Example 3.49, (6.34) is the same as

x− u = λ
u− PC(u)

dC(u)
.

Denoting α = λ
dC(u) , the last equality can be rewritten as

u =
1

α+ 1
x+

α

α+ 1
PC(u) (6.35)

or as
x− PC(u) = (α+ 1)(u− PC(u)). (6.36)

By the second projection theorem (Theorem 6.41), in order to show that PC(u) =
PC(x), it is enough to show that

〈x− PC(u),y − PC(u)〉 ≤ 0 for any y ∈ C. (6.37)

Using (6.36), we can deduce that (6.37) is equivalent to

(α+ 1)〈u− PC(u),y − PC(u)〉 ≤ 0 for any y ∈ C,

which is a valid inequality by the second projection theorem, and hence PC(u) =
PC(x). Using this fact and taking the norm in both sides of (6.36), we obtain that

dC(x) = (α + 1)dC(u) = dC(u) + λ,

which also shows that in this case dC(x) > λ (since dC(u) > 0) and that

1

α+ 1
=

dC(u)

λ+ dC(u)
=
dC(x) − λ

dC(x)
= 1− θ,

where θ is given in (6.33). Therefore, (6.35) can also be written as (recalling also
that PC(u) = PC(x))

proxλdC (x) = (1 − θ)x+ θPC(x). (6.38)

Case II. If u ∈ C, then u = PC(x). To show this, let v ∈ C. Since u = proxλdC (x),
it follows in particular that

λdC(u) +
1

2
‖u− x‖2 ≤ λdC(v) +

1

2
‖v− x‖2,

32Since θ is used only when x /∈ C, it follows that dC(x) > 0, so that θ is well defined.
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160 Chapter 6. The Proximal Operator

and hence, since dC(u) = dC(v) = 0,

‖u− x‖ ≤ ‖v − x‖.

Therefore,
u = argminv∈C‖v − x‖ = PC(x).

By Example 3.49, the optimality condition (6.34) becomes

x− PC(x)

λ
∈ NC(u) ∩B[0, 1],

which in particular implies that ∥∥∥∥x− PC(x)

λ

∥∥∥∥ ≤ 1,

that is,
dC(x) = ‖PC(x) − x‖ ≤ λ.

Since the first case in which (6.38) holds corresponds to vectors satisfying dC(x) > λ,
while the second case in which proxλdC (x) = PC(x) corresponds to vectors satisfying
dC(x) ≤ λ, the desired result (6.32) is established.

6.6 Moreau Decomposition
A key property of the prox operator is the so-called Moreau decomposition theo-
rem, which connects the prox operator of proper closed convex functions and their
conjugates.

Theorem 6.44 (Moreau decomposition). Let f : E → (−∞,∞] be proper
closed and convex. Then for any x ∈ E,

proxf (x) + proxf∗(x) = x.

Proof. Let x ∈ E and denote u = proxf (x). Then by the equivalence between
claims (i) and (ii) in the second prox theorem (Theorem 6.39), it follows that x−u ∈
∂f(u), which by the conjugate subgradient theorem (Theorem 4.20) is equivalent
to u ∈ ∂f∗(x−u). Using the second prox theorem again, we conclude that x−u =
proxf∗(x). Therefore,

proxf (x) + proxf∗(x) = u+ (x− u) = x.

The next result is a useful extension of the Moreau decomposition theorem.

Theorem 6.45 (extended Moreau decomposition). Let f : E → (−∞,∞] be
proper closed and convex, and let λ > 0. Then for any x ∈ E,

proxλf (x) + λproxλ−1f∗ (x/λ) = x. (6.39)
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6.6. Moreau Decomposition 161

Proof. Using Moreau decomposition, for any x ∈ E,

proxλf (x) = x− prox(λf)∗(x) = x− proxλf∗(·/λ)(x), (6.40)

where the second equality follows by Theorem 4.14(a). By Theorem 6.12,

proxλf∗(·/λ)(x) = λproxλ−1f∗ (x/λ) ,

which, combined with (6.40), yields (6.39).

6.6.1 Support Functions

Using Moreau decomposition, we can develop a formula for computing the prox
of a support function of a given nonempty closed and convex set in terms of the
orthogonal projection operator.

Theorem 6.46 (prox of support functions). Let C ⊆ E be a nonempty closed
and convex set, and let λ > 0. Then for any x ∈ E,

proxλσC
(x) = x− λPC(x/λ). (6.41)

Proof. A direct consequence of the extended Moreau decomposition formula (The-
orem 6.45) along with the fact that (σC)

∗ = δC (Example 4.9).

Following are several examples of prox computations using formula (6.41).

Example 6.47 (prox of norms). Let f : E → R be given by f(x) = λ‖x‖α,
where λ > 0 and ‖ · ‖α is any norm on E. Note that ‖ · ‖α is not necessarily the
endowed norm on E, which is denoted by ‖ ·‖ and in this chapter is always assumed
to be the Euclidean norm. We know by Example 2.31 that

‖x‖α = σC(x),

where

C = B‖·‖α,∗ [0, 1] = {x ∈ E : ‖x‖α,∗ ≤ 1}

with ‖ · ‖α,∗ being the dual norm of ‖ · ‖α. Invoking Theorem 6.46, we obtain

proxλ‖·‖α(x) = x− λPB‖·‖α,∗ [0,1](x/λ).

Example 6.48 (prox of l∞-norm). By Example 6.47 we have for all λ > 0 and
x ∈ Rn,

proxλ‖·‖∞(x) = x− λPB‖·‖1 [0,1]
(x/λ).
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162 Chapter 6. The Proximal Operator

The projection onto the l1 unit ball can be easily computed by finding a root of a
nonincreasing one-dimensional function; see Example 6.33.

Example 6.49 (prox of the max function). Consider the max function g :
R
n → R given by g(x) = max(x) ≡ max{x1, x2, . . . , xn}. It is easy to see that the

max function is actually the support function of the unit simplex:

max(x) = σΔn(x).

Therefore, by Theorem 6.46, for any λ > 0 and x ∈ R
n,

proxλmax(·)(x) = x− λPΔn(x/λ).

The projection onto the unit simplex can be efficiently computed by finding a root
of a nonincreasing one-dimensional function; see Corollary 6.29.

Example 6.50 (prox of the sum-of-k-largest-values function). Let f : Rn →
R be given by

f(x) = x[1] + x[2] + · · ·+ x[k],

where k ∈ {1, 2, . . . , n} and for any i, x[i] denotes ith largest value in the vector x.
It is not difficult to show that f = σC , where

C = {y ∈ R
n : eTy = k,0 ≤ y ≤ e}.

Therefore, by Theorem 6.46,

proxλf (x) = x− λPC(x/λ).

That is, for any x ∈ Rn,

proxλf (x) = x− λP{y:eTy=k,0≤y≤e}(x/λ).

As in the previous examples, computing the projection onto C amounts to finding
a root of a monotone one-dimensional function; see Theorem 6.27.

Example 6.51 (prox of the sum-of-k-largest-absolute-values function). Let
f : Rn → R be given by

f(x) =

k∑
i=1

|x〈i〉|,

where k ∈ {1, 2, . . . , n} and x〈i〉 is the component of x with the ith largest absolute
value, meaning in particular that |x〈1〉| ≥ |x〈2〉| ≥ · · · ≥ |x〈n〉|. Then

f(x) = max

{
n∑
i=1

zixi : ‖z‖1 ≤ k,−e ≤ z ≤ e

}
.

Therefore, f = σC , where

C = {z ∈ R
n : ‖z‖1 ≤ k,−e ≤ z ≤ e} ,

and consequently, by Theorem 6.46,

proxλf (x) = x− λPC(x/λ).
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6.7. The Moreau Envelope 163

That is, for any x ∈ Rn,

proxλf (x) = x− λP{y:‖y‖1≤k,−e≤y≤e}(x/λ).

The orthogonal projection in the above formula amounts to finding a root of a
nonincreasing one-dimensional function; see Example 6.34.

6.7 The Moreau Envelope

6.7.1 Definition and Basic Properties

Definition 6.52 (Moreau envelope). Given a proper closed convex function
f : E → (−∞,∞] and μ > 0, the Moreau envelope of f is the function

Mμ
f (x) = min

u∈E

{
f(u) +

1

2μ
‖x− u‖2

}
. (6.42)

The parameter μ is called the smoothing parameter. The explanation for this
terminology will be given in Section 6.7.2. By the first prox theorem (Theorem
6.3), the minimization problem in (6.42) has a unique solution, given by proxμf (x).
Therefore, Mμ

f (x) is always a real number and

Mμ
f (x) = f(proxμf (x)) +

1

2μ
‖x− proxμf (x)‖2.

Example 6.53 (Moreau envelope of indicators). Let f = δC , where C ⊆ E is
a nonempty closed and convex set. By Theorem 6.24, proxμf (x) = PC(x). Thus,
for any x ∈ E,

Mμ
f (x) = δC(PC(x)) +

1

2μ
‖x− PC(x))‖2,

and hence

Mμ
δC

=
1

2μ
d2C .

The next example will show that the Moreau envelope of the (Euclidean) norm
is the so-called Huber function defined as

Hμ(x) =

⎧⎪⎨⎪⎩
1
2μ‖x‖2, ‖x‖ ≤ μ,

‖x‖ − μ
2 , ‖x‖ > μ.

(6.43)

The one-dimensional Huber function is plotted in Figure 6.4, where it is illustrated
that the function becomes smoother as μ becomes larger.

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



164 Chapter 6. The Proximal Operator
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Figure 6.4. The Huber function with parameters μ = 0.1, 1, 4. The func-
tion becomes smoother as μ gets larger.

Example 6.54 (Huber function). Let f : E → R be given by f(x) = ‖x‖. Then
by Example 6.19, for any x ∈ E and μ > 0,

proxμf (x) =

(
1− μ

max{‖x‖, μ}

)
x.

Therefore,

Mμ
f (x) = ‖proxμf (x)‖ +

1

2μ
‖x− proxμf (x)‖2 =

⎧⎪⎨⎪⎩
1
2μ‖x‖2, ‖x‖ ≤ μ,

‖x‖ − μ
2 , ‖x‖ > μ.

Thus, for any μ > 0,

Mμ
‖·‖ = Hμ.

Note that the Moreau envelope function is actually a result of an infimal
convolution operation between the function f and the function

ωμ(x) =
1

2μ
‖x‖2. (6.44)

That is,
Mμ
f = f�ωμ.

One consequence of this observation is that by Theorem 2.19, if f is a proper closed33

and convex function, then Mμ
f is convex. We summarize the above discussion in

the following theorem.

33Actually, closedness is not necessary in order to establish the convexity of the Moreau envelope.
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6.7. The Moreau Envelope 165

Theorem 6.55. Let f : E → (−∞,∞] be a proper closed and convex function, and
let ωμ be given in (6.44), where μ > 0. Then

(a) Mμ
f = f�ωμ;

(b) Mμ
f : E → R is real-valued and convex.

We can immediately conclude from Theorem 6.55(a) along with the formula
for the conjugate of the infimal convolution (Theorem 4.16) an expression for the
conjugate of the Moreau envelope.

Corollary 6.56. Let f : E → (−∞,∞] be a proper closed and convex function and
let ωμ be given in (6.44), where μ > 0. Then

(Mμ
f )
∗ = f∗ + ω 1

μ
.

Another useful algebraic property of the Moreau envelope is described in the
following result.

Lemma 6.57. Let f : E → (−∞,∞] be a proper closed and convex function, and
let λ, μ > 0. Then for any x ∈ E,

λMμ
f (x) =M

μ/λ
λf (x). (6.45)

Proof. For any x ∈ E,

λMμ
f (x) = λmin

u

{
f(u) +

1

2μ
‖u− x‖2

}
= min

u

{
λf(u) +

1

2μ/λ
‖u− x‖2

}
=M

μ/λ
λf (x).

A simple calculus rule states that the Moreau envelope of a separable sum of
functions is the sum of the corresponding Moreau envelopes.

Theorem 6.58 (Moreau envelope of separable functions). Suppose that
E = E1 × E2 × · · · × Em, and let f : E → (−∞,∞] be given by

f(x1,x2, . . . ,xm) =
m∑
i=1

fi(xi), x1 ∈ E1,x2 ∈ E2, . . . ,xm ∈ Em,

with fi : Ei → (−∞,∞] being a proper closed and convex function for any i. Then
given μ > 0, for any x1 ∈ E1,x2 ∈ E2, . . . ,xm ∈ Em,

Mμ
f (x1,x2, . . . ,xm) =

m∑
i=1

Mμ
fi
(xi).
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166 Chapter 6. The Proximal Operator

Proof. For any x1 ∈ E1,x2 ∈ E2, . . . ,xm ∈ Em, denoting x = (x1,x2, . . . ,xm), we
have

Mμ
f (x) = min

ui∈Ei,i=1,2,...,m

{
f(u1,u2, . . . ,um) +

1

2μ
‖(u1,u2, . . . ,um)− x‖2

}
= min

ui∈Ei,i=1,2,...,m

{
m∑
i=1

fi(ui) +
1

2μ

m∑
i=1

‖ui − xi‖2
}

=

m∑
i=1

min
ui∈Ei

{
fi(ui) +

1

2μ
‖ui − xi‖2

}

=

m∑
i=1

Mμ
fi
(xi).

Example 6.59 (Moreau envelope of the l1-norm). Consider the function f :
Rn → R given by f(x) = ‖x‖1. Note that

f(x) = ‖x‖1 =

n∑
i=1

g(xi),

where g(t) = |t|. By Example 6.54, Mμ
g = Hμ. Thus, invoking Theorem 6.58, we

obtain that for any x ∈ Rn,

Mμ
f (x) =

n∑
i=1

Mμ
g (xi) =

n∑
i=1

Hμ(xi).

6.7.2 Differentiability of the Moreau Envelope

The main differentiability properties of the Moreau envelope function are stated in
the next result.

Theorem 6.60 (smoothness of the Moreau envelope). Let f : E → (−∞,∞]
be a proper closed and convex function. Let μ > 0. Then Mμ

f is 1
μ -smooth over E,

and for any x ∈ E,

∇Mμ
f (x) =

1

μ

(
x− proxμf (x)

)
.

Proof. By Theorem 6.55(a), Mμ
f = f�ωμ, where ωμ = 1

2μ‖ · ‖2. We can therefore

invoke Theorem 5.30, whose assumptions are satisfied (taking ω = ωμ and L = 1
μ ),

and conclude that Mμ
f is 1

μ -smooth. In addition, since

proxμf (x) = argminu∈E

{
f(u) +

1

2μ
‖u− x‖2

}
,

it follows that the vector u(x) defined in Theorem 5.30 is equal to proxμf (x) and
that

∇Mμ
f (x) = ∇ωμ(x− u(x)) =

1

μ
(x− proxμf (x)).
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6.7. The Moreau Envelope 167

Example 6.61 (1-smoothness of 1
2
d2
C). Let C ⊆ E be a nonempty closed and

convex set. Recall that by Example 6.53, 1
2d

2
C =M1

δC
. Then by Theorem 6.60, 1

2d
2
C

is 1-smooth and

∇
(
1

2
d2C

)
(x) = x− proxδC (x) = x− PC(x).

Note that the above expression for the gradient was already derived in Example
3.31 and that the 1-smoothness of 1

2d
2
C was already established twice in Examples

5.5 and 5.31.

Example 6.62 (smoothness of the Huber function). Recall that the Huber
function is given by

Hμ(x) =

⎧⎪⎨⎪⎩
1
2μ‖x‖2, ‖x‖ ≤ μ,

‖x‖ − μ
2 , ‖x‖ > μ.

By Example 6.54, Hμ = Mμ
f , where f(x) = ‖x‖. Then, by Theorem 6.60, Hμ is

1
μ -smooth and

∇Hμ(x) =
1

μ

(
x− proxμf (x)

)
(∗)
=

1

μ

(
x−

(
1− μ

max{‖x‖, μ}

)
x

)

=

⎧⎪⎨⎪⎩
1
μx, ‖x‖ ≤ μ,

x
‖x‖ , ‖x‖ > μ,

where the equality (∗) uses the expression for proxμf developed in Example 6.19.

6.7.3 Prox of the Moreau Envelope

An interesting and important result states that if we can compute the prox of a
proper closed and convex function f , then we can also compute the prox of its
Moreau envelope.

Theorem 6.63 (prox of Moreau envelope). Let f : E → (−∞,∞] be a proper
closed and convex function, and let μ > 0. Then for any x ∈ E,

proxMμ
f
(x) = x+

1

μ+ 1

(
prox(μ+1)f (x) − x

)
.

Proof. First note that

min
u

{
Mμ
f (u) +

1

2
‖u− x‖2

}
= min

u
min
y

{
f(y) +

1

2μ
‖u− y‖2 + 1

2
‖u− x‖2

}
.

(6.46)
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168 Chapter 6. The Proximal Operator

Exchanging the order of minimizations, we obtain the following problem:

min
y

min
u

{
f(y) +

1

2μ
‖u− y‖2 + 1

2
‖u− x‖2

}
. (6.47)

The optimal solution of the inner minimization problem in u is attained when the
gradient w.r.t. u vanishes:

1

μ
(u− y) + (u− x) = 0,

that is, when

u = uμ ≡ μx+ y

μ+ 1
. (6.48)

Therefore, the optimal value of the inner minimization problem in (6.47) is

f(y) +
1

2μ
‖uμ − y‖2 + 1

2
‖uμ − x‖2 = f(y) +

1

2μ

∥∥∥∥μx− μy

μ+ 1

∥∥∥∥2 + 1

2

∥∥∥∥y − x

μ+ 1

∥∥∥∥2
= f(y) +

1

2(μ+ 1)
‖x− y‖2.

Therefore, the optimal solution of (6.46) is given by (6.48), where y is the solution
of

min
y

{
f(y) +

1

2(μ+ 1)
‖x− y‖2

}
,

that is, y = prox(μ+1)f (x). To summarize,

proxMμ
f
(x) =

1

μ+ 1

(
μx+ prox(μ+1)f (x)

)
.

Combining Theorem 6.63 with Lemma 6.57 leads to the following corollary.

Corollary 6.64. Let f : E → (−∞,∞] be a proper closed and convex function,
and let λ, μ > 0. Then for any x ∈ E,

proxλMμ
f
(x) = x+

λ

μ+ λ

(
prox(μ+λ)f (x) − x

)
.

Proof. proxλMμ
f
(x) = prox

M
μ/λ
λf

(x) = x+ λ
μ+λ

(
prox(μ+λ)f (x)− x

)
.

Example 6.65 (prox of λ
2
d2
C). Let C ⊆ E be a nonempty closed and convex set,

and let λ > 0. Consider the function f = 1
2d

2
C . Then, by Example 6.53, f = M1

g ,
where g = δC . Recall that proxg = PC . Therefore, invoking Corollary 6.64, we
obtain that for any x ∈ E,

proxλf (x) = proxλM1
g
(x) = x+

λ

λ+ 1

(
prox(λ+1)g(x)− x

)
= x+

λ

λ+ 1
(PC(x)− x) .

To conclude,
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6.7. The Moreau Envelope 169

proxλ
2 d

2
C
(x) =

λ

λ+ 1
PC(x) +

1

λ+ 1
x.

Example 6.66 (prox of the Huber function). Consider the function

f(x) = λHμ(x),

where Hμ is the Huber function with a smoothing parameter μ > 0 given in (6.43).
By Example 6.54, Hμ = Mμ

g , where g(x) = ‖x‖. Therefore, by Corollary 6.64, it
follows that for any λ > 0 and x ∈ E (recalling the expression for the prox of the
Euclidean norm derived in Example 6.19),

proxλHμ
(x) = proxλMμ

g
(x) = x+

λ

μ+ λ

(
prox(μ+λ)g(x) − x

)
= x+

λ

μ+ λ

((
1− μ+ λ

max{‖x‖, μ+ λ}

)
x− x

)
,

which, after some algebraic cancellations, reduces to

proxλHμ
(x) =

(
1− λ

max{‖x‖, μ+ λ}

)
x.

Similarly to the Moreau decomposition formula for the prox operator (Theo-
rem 6.45), we can obtain a decomposition formula for the Moreau envelope function.

Theorem 6.67 (Moreau envelope decomposition). Let f : E → (−∞,∞] be
a proper closed and convex function, and let μ > 0. Then for any x ∈ E,

Mμ
f (x) +M

1/μ
f∗ (x/μ) =

1

2μ
‖x‖2.

Proof. Recall that for any x ∈ E,

Mμ
f (x) = min

u∈E
{f(u) + ψ(u)} ,

where ψ(u) ≡ 1
2μ‖u− x‖2. By Fenchel’s duality theorem (Theorem 4.15), we have

Mμ
f (x) = max

v∈E
{−f∗(v) − ψ∗(−v)} = −min

v∈E
{f∗(v) + ψ∗(−v)} .

Denote φ(·) = 1
2‖ · −x‖2. Then

φ∗(v) =
1

2
‖v‖2 + 〈x,v〉.
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170 Chapter 6. The Proximal Operator

Since ψ = 1
μφ, it follows by Theorem 4.14 that

ψ∗(v) =
1

μ
φ∗(μv) =

μ

2
‖v‖2 + 〈x,v〉.

Therefore,

Mμ
f (x) = −min

v∈E

{
f∗(v) +

μ

2
‖v‖2 − 〈x,v〉

}
,

and hence

Mμ
f (x) = −min

v∈E

{
f∗(v) +

μ

2
‖v − x/μ‖2 − 1

2μ
‖x‖2

}
=

1

2μ
‖x‖2 −M

1/μ
f∗ (x/μ),

establishing the desired result.

6.8 Miscellaneous Prox Computations
In this section we gather several examples of prox computations that are not linked
to any specific result established in this chapter.

6.8.1 Norm of a Linear Transformation over Rn

Lemma 6.68. Let f : Rn → R be given by f(x) = ‖Ax‖2, where A ∈ Rm×n is
with full row rank, and let λ > 0. Then

proxλf (x) =

⎧⎪⎨⎪⎩ x−AT (AAT )−1Ax, ‖(AAT )−1Ax‖2 ≤ λ,

x−AT (AAT + α∗I)−1Ax, ‖(AAT )−1Ax‖2 > λ,

where α∗ is the unique positive root of the decreasing function

g(α) = ‖(AAT + αI)−1Ax‖22 − λ2.

Proof. The vector proxλf (x) is the unique optimal solution to

min
u∈Rn

{
λ‖Au‖2 +

1

2
‖u− x‖22

}
,

which can also be rewritten as

min
u∈Rn,z∈Rm

{
1

2
‖u− x‖22 + λ‖z‖2 : z = Au

}
. (6.49)

To construct a Lagrangian dual problem, we first form the Lagrangian:

L(u, z;y) =
1

2
‖u− x‖22 + λ‖z‖2 + yT (z−Au)

=

[
1

2
‖u− x‖22 − (ATy)Tu

]
+
[
λ‖z‖2 + yT z

]
.
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6.8. Miscellaneous Prox Computations 171

Since the Lagrangian is separable w.r.t. u and z, the dual objective function can be
rewritten as

min
u,z

L(u, z;y) = min
u

[
1

2
‖u− x‖22 − (ATy)Tu

]
+min

z

[
λ‖z‖2 + yT z

]
. (6.50)

The minimizer of the minimization problem in u is ũ = x+ATy with a correspond-
ing optimal value of

min
u

[
1

2
‖u− x‖22 − (ATy)Tu

]
=

1

2
‖ũ− x‖22 − (ATy)T ũ

= −1

2
yTAATy − (Ax)Ty. (6.51)

As for the second minimization problem, note that

min
z

[
λ‖z‖2 + yT z

]
= −max

z
[(−y)T z− λ‖z‖2] = −g∗(−y),

where g(·) = λ‖ · ‖2. Since g∗(w) = λδB‖·‖2 [0,1]
(w/λ) = δB‖·‖2 [0,λ]

(see Section

4.4.12 and Theorem 4.14), we can conclude that

min
z

[
λ‖z‖2 + yT z

]
=

⎧⎪⎨⎪⎩ 0, ‖y‖2 ≤ λ,

−∞, ‖y‖2 > λ.

Combining this with (6.51), we obtain the following dual problem:

max
y∈Rm

{
−1

2
yTAATy − (Ax)Ty : ‖y‖2 ≤ λ

}
. (6.52)

Note that strong duality holds for the primal-dual pair of problems (6.49) and (6.52)
(see Theorem A.1). To solve problem (6.52), we will first rewrite it as a minimization
problem:

min
y∈Rm

{
1

2
yTAATy + (Ax)Ty : ‖y‖22 ≤ λ2

}
. (6.53)

So far we have shown that

proxλf (x) = x+ATy, (6.54)

where y is an optimal solution of problem (6.53). Since problem (6.53) is convex and
satisfies Slater’s condition, it follows by the KKT conditions that y is an optimal
solution of (6.53) if and only if there exists α∗ (optimal dual variable) for which

(AAT + α∗I)y +Ax = 0, (6.55)

α∗(‖y‖22 − λ2) = 0, (6.56)

‖y‖22 ≤ λ2, (6.57)

α∗ ≥ 0. (6.58)

There are two options. In the first, α∗ = 0, and then by (6.55),

y = −(AAT )−1Ax. (6.59)
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172 Chapter 6. The Proximal Operator

Since (6.56) and (6.58) are automatically satisfied for α∗ = 0, we can conclude
that y given in (6.59) is the optimal solution of (6.53) if and only if (6.57) is
satisfied, meaning if and only if ‖(AAT )−1Ax‖2 ≤ λ. In this case, by (6.54),
proxλf (x) = x−AT (AAT )−1Ax.

On the other hand, if ‖(AAT )−1Ax‖2 > λ, then α∗ > 0, and hence by the
complementary slackness condition (6.56),

‖y‖22 = λ2. (6.60)

By (6.55),
y = −(AAT + α∗I)−1Ax.

Using (6.60), we can conclude that α∗ can be uniquely determined as the positive
root of the function

g(α) = ‖(AAT + αI)−1Ax‖22 − λ2.

It is easy to see that g is strictly decreasing for α ≥ 0, and therefore g has a unique
root.

6.8.2 Squared l1-Norm

The prox of the l1-norm has a simple formula. In this section we will show how to
compute the prox of the squared l1-norm—a task that will prove itself to be much
more complicated. We will require the following lemma that expresses ‖x‖21 as the
optimal value of an optimization problem written in terms of the function

ϕ(s, t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s2

t , t > 0,

0, s = 0, t = 0,

∞ else.

(6.61)

By Example 2.32, ϕ is closed and convex (even though it is not continuous at
(s, t) = (0, 0)).

Lemma 6.69 (variational representation of ‖ · ‖2
1). For any x ∈ Rn the

following holds:

min
λ∈Δn

n∑
j=1

ϕ(xj , λj) = ‖x‖21, (6.62)

where ϕ is defined in (6.61). An optimal solution of the minimization problem in
(6.62) is given by

λ̃j =

⎧⎪⎨⎪⎩
|xj|
‖x‖1 , x 
= 0,

1
n , x = 0,

j = 1, 2, . . . , n. (6.63)

Proof. Since problem (6.62) consists of minimizing a closed and convex function
(by Example 2.32) over a compact set, then by the Weierstrass theorem for closed
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6.8. Miscellaneous Prox Computations 173

functions (Theorem 2.12), it possesses an optimal solution, which we denote by
λ∗ ∈ Δn. Define

I0 = {i ∈ {1, 2, . . . , n} : λ∗i = 0},
I1 = {i ∈ {1, 2, . . . , n} : λ∗i > 0}.

By the definitions of I0 and I1, we have

∑
i∈I1

λ∗j =
n∑
i=1

λ∗j = 1. (6.64)

It holds that xi = 0 for any i ∈ I0, since otherwise we will have that ϕ(xi, λ
∗
i ) = ∞,

which is a clear contradiction to the optimality of λ∗. Therefore, using the Cauchy–
Schwarz inequality,

n∑
j=1

|xj | =
∑
j∈I1

|xj | =
∑
j∈I1

|xj |√
λ∗j

√
λ∗j ≤

√√√√∑
j∈I1

x2j
λ∗j

·
√∑
j∈I1

λ∗j
(6.64)
=

√√√√∑
j∈I1

x2j
λ∗j
.

We can thus conclude that

n∑
j=1

ϕ(xj , λ
∗
j ) =

∑
j∈I1

ϕ(xj , λ
∗
j ) =

∑
j∈I1

x2j
λ∗j

≥ ‖x‖21. (6.65)

On the other hand, since λ∗ is an optimal solution of the problem in (6.62),

n∑
j=1

ϕ(xj , λ
∗
j ) ≤

n∑
j=1

ϕ(xj , λ̃j) = ‖x‖21, (6.66)

where λ̃ is given by (6.63). Combining (6.65) and (6.66), we finally conclude that
the optimal value of the minimization problem in (6.62) is ‖x‖21 and that λ̃ is an
optimal solution.

Lemma 6.70 (prox of ‖ · ‖2
1).

34 Let f : Rn → R be given by f(x) = ‖x‖21, and
let ρ > 0. Then

proxρf (x) =

⎧⎪⎨⎪⎩
(
λixi

λi+2ρ

)n
i=1

, x 
= 0,

0, x = 0,

where λi =
[√

ρ|xi|√
μ∗ − 2ρ

]
+

with μ∗ being any positive root of the nonincreasing

function

ψ(μ) =
n∑
i=1

[√
ρ|xi|√
μ

− 2ρ

]
+

− 1.

34The computation of the prox of the squared l1-norm is due to Evgeniou, Pontil, Spinellis, and
Nassuphis [54].
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174 Chapter 6. The Proximal Operator

Proof. If x = 0, then obviously proxρf (x) = argminu
{
1
2‖u‖22 + ρ‖u‖21

}
= 0.

Assume that x 
= 0. By Lemma 6.69, u = proxρf (x) if and only if it is the u-part
of the optimal solution of

min
u∈Rn,λ∈Δn

{
1

2
‖u− x‖22 + ρ

n∑
i=1

ϕ(ui, λi)

}
,

where ϕ is defined in (6.61). Minimizing first with respect to u, we obtain that
ui =

λixi

λi+2ρ , and the problem thus reduces to

minλ

n∑
i=1

ρx2i
λi + 2ρ

s.t. eTλ = 1,

λ ≥ 0.

(6.67)

By Theorem A.1, strong duality holds for problem (6.67) (taking the underlying set
as X = R

n
+). Associating a Lagrange multiplier μ to the equality constraint, the

Lagrangian is

L(λ;μ) =

n∑
i=1

(
ρx2i

λi + 2ρ
+ λiμ

)
− μ.

By Theorem A.2, λ∗ is an optimal solution of (6.67) if and only if there exists μ∗

for which

λ∗ ∈ argminλ≥0L(λ;μ
∗), (6.68)

eTλ∗ = 1. (6.69)

Since the minimum in (6.68) is finite and attained, and since x 
= 0, it follows
that μ∗ > 0 (otherwise, if μ∗ = 0, the minimum in (6.68) would not be attained).
Exploiting the separability of the Lagrangian, it follows that (6.68) is the same as

λ∗i =

[√
ρ|xi|√
μ

− 2ρ

]
+

.

The dual optimal variable μ∗ is chosen to satisfy (6.69):

n∑
i=1

[√
ρ|xi|√
μ

− 2ρ

]
+

= 1.

6.8.3 Projection onto the Set of s-Sparse Vectors

Let s ∈ {1, 2, . . . , n} and consider the set

Cs = {x ∈ R
n : ‖x‖0 ≤ s} .

The set Cs comprises all s-sparse vectors, meaning all vectors with at most s nonzero
elements. Obviously Cs is not convex; for example, for n = 2, (0, 1)T , (1, 0)T ∈ C1,
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6.8. Miscellaneous Prox Computations 175

but (0.5, 0.5)T = 0.5(0, 1)T+0.5(1, 0)T /∈ C1. The set Cs is closed as a level set of the
closed function ‖·‖0 (see Example 2.11). Therefore, by Theorem 6.4, PCs = proxδCs

is nonempty; however, the nonconvexity of Cs implies that PCs(x) is not necessarily
a singleton.

The set PCs(x) is described in Lemma 6.71 below. The description requires
some additional notation. For a vector x ∈ Rn and a set of indices S ⊆ {1, 2, . . . , n},
the vector xS is the subvector of x that corresponds to the indices in S. For example,
for n = 4, if x = (4, 3, 5,−1)T , then x{1,4} = (4,−1)T ,x{2,3} = (3, 5)T . For a given
indices set S ⊆ {1, 2, . . . , n}, the matrix US is the submatrix of the identity matrix
In comprising the columns corresponding to the indices in S. For example, for
n = 3,

U{1,3} =

⎛⎜⎜⎜⎜⎝
1 0

0 0

0 1

⎞⎟⎟⎟⎟⎠ , U{2} =

⎛⎜⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎟⎠ .

For a given indices set S ⊆ {1, 2, . . . , n}, the complement set Sc is given by Sc =
{1, 2, . . . , n} \ S.

Finally, we recall our notation (that was also used in Example 6.51) that for
a given x ∈ Rn, x〈i〉 is the ith largest value among |x1|, |x2|, . . . , |xn|. Therefore, in
particular, |x〈1〉| ≥ |x〈2〉| ≥ · · · ≥ |x〈n〉|. Lemma 6.71 shows that PCs(x) comprises
all vectors consisting of the s components of x with the largest absolute values
and with zeros elsewhere. There may be several choices for the s components with
largest absolute values, and this is why PCs(x) might consist of several vectors.
Note that in the statement of the lemma, we characterize the property of an index
set S to “comprise s indices corresponding to the s largest absolute values in x” by
the relation

S ⊆ {1, 2, . . . , n}, |S| = s,
∑
i∈S

|xi| =
s∑
i=1

|x〈i〉|.

Lemma 6.71 (projection onto Cs). Let s ∈ {1, 2, . . . , n} and x ∈ R
n. Then

PCs(x) =

{
USxS : |S| = s, S ⊆ {1, 2, . . . , n},

∑
i∈S

|xi| =
s∑
i=1

|x〈i〉|
}
.

Proof. Since Cs consists of all s-sparse vectors, it can be represented as the fol-
lowing union:

Cs =
⋃

S⊆{1,2,...,n},|S|=s
AS ,

where AS = {x ∈ Rn : xSc = 0}. Therefore,35

PCs(x) ⊆
⋃

S⊆{1,2,...,n},|S|=s
{PAS (x)} . (6.70)

35Since AS is convex, we treat PAS
(x) as a vector and not as a singleton set. The inclusion

(6.70) holds since if B1, B2, . . . , Bm are closed convex sets, then P∪m
i=1Bi

(x) ⊆ ∪m
i=1{PBi

(x)} for
any x.
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176 Chapter 6. The Proximal Operator

The vectors in PCs(x) will be the vectors PAS (x) with the smallest possible
value of ‖PAS (x)− x‖2. The vector PAS (x) is the optimal solution of the problem

min
y∈Rn

{
‖y − x‖22 : ySc = 0

}
,

which can be rewritten as

min
y∈Rn

{
‖yS − xS‖22 + ‖xSc‖22 : ySc = 0

}
.

The optimal solution of the above problem is obviously given by yS = xS ,ySc = 0,
that is, y = USxS , and the optimal value is ‖xSc‖22. The vectors in PCs(x) will
therefore be of the form USxS , with indices sets S with cardinality s and with
minimal value ‖xSc‖22, which is equivalent to the condition that S consists of s
indices corresponding to the s largest absolute values in x.

Example 6.72. Suppose that n = 4. Then

PC2 [(2, 3,−2, 1)T ] = {(2, 3, 0, 0)T , (0, 3,−2, 0)T}.
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6.9. Summary of Prox Computations 177

6.9 Summary of Prox Computations

f(x) dom(f) proxf (x) Assumptions Reference

1
2x

TAx +

bTx + c

R
n (A + I)−1(x− b) A ∈ S

n
+, b ∈

R
n, c ∈ R

Section 6.2.3

λx3
R+

−1+
√

1+12λ[x]+
6λ λ > 0 Lemma 6.5

μx [0, α] ∩ R min{max{x− μ, 0}, α} μ ∈ R, α ∈
[0,∞]

Example 6.14

λ‖x‖ E

(
1− λ

max{‖x‖,λ}
)
x ‖·‖—Euclidean

norm, λ > 0
Example 6.19

−λ‖x‖ E

(
1 + λ

‖x‖
)
x, x = 0,

{u : ‖u‖ = λ}, x = 0.
‖·‖—Euclidean
norm, λ > 0

Example 6.21

λ‖x‖1 R
n Tλ(x) = [|x| − λe]+ � sgn(x) λ > 0 Example 6.8

‖ω � x‖1 Box[−α,α] Sω,α(x) α ∈ [0,∞]n,
ω ∈ R

n
+

Example 6.23

λ‖x‖∞ R
n x− λPB‖·‖1 [0,1](x/λ) λ > 0 Example 6.48

λ‖x‖a E x− λPB‖·‖a,∗ [0,1](x/λ) ‖x‖a—
arbitrary
norm, λ > 0

Example 6.47

λ‖x‖0 R
n H√

2λ(x1)× · · · × H√
2λ(xn) λ > 0 Example 6.10

λ‖x‖3 E
2

1+
√

1+12λ‖x‖x ‖·‖—Euclidean
norm, λ > 0,

Example 6.20

−λ
n∑

j=1

log xj R
n
++

⎛
⎝ xj+

√
x2
j
+4λ

2

⎞
⎠

n

j=1

λ > 0 Example 6.9

δC(x) E PC(x) ∅ = C ⊆ E Theorem 6.24

λσC (x) E x− λPC(x/λ) λ > 0, C = ∅
closed convex

Theorem 6.46

λmax{xi} R
n x− λPΔn (x/λ) λ > 0 Example 6.49

λ
∑k

i=1 x[i] R
n x− λPC(x/λ),

C = He,k ∩ Box[0,e]
λ > 0 Example 6.50

λ
∑k

i=1 |x〈i〉| R
n x− λPC(x/λ),

C = B‖·‖1 [0, k] ∩ Box[−e, e]
λ > 0 Example 6.51

λMμ
f (x) E x +

λ
μ+λ

(
prox(μ+λ)f (x)− x

) λ, μ > 0, f
proper closed
convex

Corollary 6.64

λdC(x) E x +

min
{

λ
dC (x)

, 1
}
(PC(x)− x)

∅ = C closed
convex, λ > 0

Lemma 6.43

λ
2 d

2
C(x) E

λ
λ+1PC(x) + 1

λ+1x ∅ = C closed
convex, λ > 0

Example 6.65

λHμ(x) E

(
1− λ

max{‖x‖,μ+λ}
)
x λ, μ > 0 Example 6.66

ρ‖x‖21 R
n

(
vixi

vi+2ρ

)n

i=1
, v =[√

ρ
μ |x| − 2ρ

]
+
,eTv = 1 (0

when x = 0)

ρ > 0 Lemma 6.70

λ‖Ax‖2 R
n x − AT (AAT + α∗I)−1Ax,

α∗ = 0 if ‖v0‖2 ≤ λ; oth-
erwise, ‖vα∗‖2 = λ; vα ≡
(AAT + αI)−1Ax

A ∈ R
m×n

with full row
rank, λ > 0

Lemma 6.68
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Chapter 7

Spectral Functions

In this chapter we will concentrate on spectral functions, which are functions of
matrices that depend only on their singular values or on their eigenvalues. The
underlying spaces in this chapter are all Euclidean. We start by defining the notion
of symmetry w.r.t. a given set of orthogonal matrices.

7.1 Symmetric Functions

7.1.1 Definition and Examples

Definition 7.1 (symmetric functions). Let A ⊆ On be a set of orthogonal
matrices. A proper function f : Rn → (−∞,∞] is called symmetric w.r.t. A if

f(Ax) = f(x) for all x ∈ R
n,A ∈ A.

The following are five types of symmetric functions, each one dictated by the
choice of orthogonal matrices in A.

Example 7.2 (even functions). If A = {−I}, then f : Rn → (−∞,∞] is
symmetric w.r.t. A if

f(x) = f(−x) for all x ∈ R
n.

Such functions will be called even functions.

Example 7.3 (absolutely symmetric functions). Take A = {D1,D2, . . . ,Dn}
⊆ Rn×n, where Di is the diagonal matrix whose diagonal elements are all ones
except for the (i, i) component which is equal to −1. Then a proper function
f : Rn → (−∞,∞] is symmetric w.r.t. A if and only if

f(x) = f(|x|) for all x ∈ R
n.

We will call such a function an absolutely symmetric function. It is easy to show that
f is absolutely symmetric if and only if there exists a function g : Rn+ → (−∞,∞]
such that f(x) = g(|x|) for all x ∈ Rn.

179
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180 Chapter 7. Spectral Functions

Example 7.4 (norm-dependent functions). A proper function f : Rn →
(−∞,∞] is symmetric w.r.t. A = On if and only if

f(x) = f(Ux) for all x ∈ R
n,U ∈ O

n.

The above holds if and only if there exists a proper function g : R → (−∞,∞] such
that

f(x) = g(‖x‖2) for all x ∈ R
n.

A function satisfying the above is called a norm-dependent function.

We will require some additional notation before describing the next two ex-
amples. For a given vector x ∈ Rn, the vector x↓ is the vector x reordered nonin-
creasingly. For example, if x = (2,−9, 2, 10)T , then x↓ = (10, 2, 2,−9)T .

Definition 7.5 (permutation matrices). An n×n matrix is called a permuta-
tion matrix if all its components are either 0 or 1 and each row and each column
has exactly one nonzero element. The set of all n × n permutation matrices is
denoted by Λn.

Definition 7.6 (generalized permutation matrices). An n×n matrix is called
a generalized permutation matrix if all its components are either 0, 1, or −1
and each row and each column has exactly one nonzero element. The set of all n×n
generalized permutation matrices is denoted by ΛG

n .

Thus, for example,⎛⎜⎜⎜⎜⎝
0 1 0

1 0 0

0 0 1

⎞⎟⎟⎟⎟⎠ ∈ Λ3,

⎛⎜⎜⎜⎜⎝
0 −1 0

1 0 0

0 0 −1

⎞⎟⎟⎟⎟⎠ ∈ ΛG
3 .

By the definition of permutation and generalized permutation matrices, it is easy
to see that for any x ∈ Rn there exists a permutation matrix P ∈ Λn for which
Px = x↓ and a generalized permutation matrixQ ∈ ΛG

n for which Qx = |x|↓. It can
be readily verified that permutation matrices, as well as generalized permutation
matrices, are orthogonal.

Example 7.7 (permutation symmetric functions). A proper function f :
Rn → (−∞,∞] is symmetric w.r.t. Λn if and only if

f(x) = f(Px) for all x ∈ R
n,P ∈ Λn.

Such a function will be called a permutation symmetric function. It is easy to show
that f is permutation symmetric if and only if

f(x) = f(x↓) for all x ∈ R
n.

Example 7.8 (absolutely permutation symmetric functions). A proper
function f : Rn → (−∞,∞] is symmetric w.r.t. ΛG

n if and only if

f(x) = f(Px) for all x ∈ R
n,P ∈ ΛG

n .
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7.1. Symmetric Functions 181

Such a function will be called an absolutely permutation symmetric function. It is
easy to show that f is absolutely permutation symmetric if and only if

f(x) = f(|x|↓) for all x ∈ R
n.

7.1.2 The Symmetric Conjugate Theorem

We will now show that the conjugate of a symmetric function w.r.t. a set of orthog-
onal matrices is always symmetric w.r.t. the same set of matrices.

Theorem 7.9 (symmetric conjugate theorem).36 Let f : Rn → (−∞,∞] be
a proper function which is symmetric w.r.t. a set of orthogonal matrices A ⊆ On.
Then f∗ is symmetric w.r.t. A.

Proof. Let A ∈ A. Then by the symmetry assumption, h = f , where h(x) ≡
f(Ax). Thus,

f∗(y) = h∗(y) for all y ∈ R
n. (7.1)

By Theorem 4.13 and the orthogonality of A, for any y ∈ Rn,

h∗(y) = f∗((AT )−1y) = f∗(Ay),

which, combined with (7.1), yields

f∗(y) = f∗(Ay) for all y ∈ R
n.

Since the above holds for any A ∈ A, it follows that f∗ is symmetric w.r.t. A.

Example 7.10. In this example we will illustrate the symmetric conjugate theorem
by verifying that the types of symmetries satisfied by the functions in the table of
Section 4.4.16 also hold for their conjugates.

• even functions

f(x) dom(f) f∗(y) Assumptions Reference

1
p
|x|p R

1
q
|y|q p > 1, 1

p
+ 1

q
= 1 Section 4.4.4

1
2
xTAx+ c Rn 1

2
yTA−1y − c A ∈ Sn++, c ∈ R Section 4.4.6

• permutation symmetric functions

f(x) dom(f) f∗(y) Reference

∑n
i=1 xi log xi Rn

+

∑n
i=1 e

yi−1 Section 4.4.8

∑n
i=1 xi log xi Δn log

(∑n
i=1 e

yi
)

Section 4.4.10

log
(∑n

i=1 e
xi
)

Rn
∑n

i=1 yi log yi
(dom(f∗) = Δn)

Section 4.4.11

maxi{xi} Rn δΔn (y) Example 4.10

36The symmetric conjugate theorem (Theorem 7.9) is from Rockafellar [108, Corollary 12.3.1].
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182 Chapter 7. Spectral Functions

• absolutely permutation symmetric functions

f(x) dom(f) f∗(y) Reference

‖x‖p Rn δB‖·‖q [0,1](y) Section 4.4.12

1
2
‖x‖2p E

1
2
‖y‖2q Section 4.4.15

where p, q ∈ [1,∞], 1
p +

1
q = 1 (with the convention that if p = 1,∞, then q = ∞, 1,

respectively).

• norm-dependent functions

f dom(f) f∗ Reference

‖x‖2 Rn δB‖·‖2 [0,1]
(y) Section 4.4.12

−
√
α2 − ‖x‖22
(α > 0)

B‖·‖2 [0, α] α
√

‖y‖22 + 1 Section 4.4.13

√
α2 + ‖x‖22
(α > 0)

Rn −α
√

1− ‖y‖22
(domf∗ = B‖·‖2 [0,1])

Section 4.4.14

1
2
‖x‖22 Rn 1

2
‖y‖22 Section 4.4.15

7.2 Symmetric Spectral Functions over S
n37

The main concern of this chapter are functions of matrices that are defined on
either the set of symmetric matrices Sn or the set of matrices Rm×n. We will deal
only with functions that depend either on the eigenvalues of their argument (if the
underlying space is Sn) or on the singular values (if the underlying space is Rm×n).
Such functions are called spectral functions. We first consider functions over Sn.
Given a matrix X ∈ Sn, its eigenvalues ordered nonincreasingly are denoted by

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

The eigenvalues function λ : Sn → R
n is defined as

λ(X) ≡ (λ1(X), λ2(X), . . . , λn(X))T .

A key fact from linear algebra is that any symmetric matrixX ∈ Sn has a spectral de-
composition, meaning an orthogonal matrixU ∈ On for whichX = Udiag(λ(X))UT .
We begin by formally defining the notion of spectral functions over Sn.

Definition 7.11 (spectral functions over Sn). A proper function g : Sn →
(−∞,∞] is called a spectral function over Sn if there exists a proper function
f : Rn → (−∞,∞] for which g = f ◦ λ.

37Sections 7.2 and 7.3, excluding the spectral proximal theorem, are based on the seminal papers
of Lewis [80, 81] on unitarily invariant functions. The spectral proximal formulas can be found in
Parikh and Boyd [102].
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7.2. Symmetric Spectral Functions over Sn 183

If g = f ◦ λ, we will refer to f (which is actually not necessarily unique) as
the associated function. Our main interest will be to study spectral functions whose
associated functions are permutation symmetric.

Definition 7.12 (symmetric spectral functions over S
n). A proper function

f : Sn → (−∞,∞] is called a symmetric spectral function over Sn if there
exists a proper permutation symmetric function f : Rn → (−∞,∞] for which g =
f ◦ λ.

Example 7.13. Following is a list of permutation symmetric functions along with
their associated symmetric spectral functions.

# f(x) dom(f) f(λ(X)) dom(f ◦ λ)

1
∑n

i=1 xi Rn Tr(X) Sn

2 max
i=1,2,...,n

xi Rn λmax(X) Sn

3 α‖x‖2 (α ∈ R) Rn α‖X‖F Sn

4 α‖x‖22 (α ∈ R) Rn α‖X‖2F Sn

5 α‖x‖∞ (α ∈ R) Rn α‖X‖2,2 Sn

6 α‖x‖1 (α ∈ R) Rn α‖X‖S1
Sn

7 −
∑n

i=1 log(xi) Rn
++ − log det(X) Sn++

8
∑n

i=1 xi log(xi) Rn
+

∑n
i=1 λi(X) log(λi(X)) Sn+

9
∑n

i=1 xi log(xi) Δn
∑n

i=1 λi(X) log(λi(X)) Υn

The domain of the last function in the above table is the spectahedron set
given by

Υn = {X ∈ S
n
+ : Tr(X) = 1}.

The norm used in the sixth function is the Schatten 1-norm whose expression for
symmetric matrices is given by

‖X‖S1 =

n∑
i=1

|λi(X)|, X ∈ S
n.

Schatten p-norms will be discussed in detail in Section 7.3

A fundamental inequality that will be a key argument in establishing the main
results of this section is the so-called Fan inequality stating that the inner product of
two symmetric matrices is upper bounded by the inner product of their eigenvalues
vectors and that equality holds if and only if the two matrices are simultaneously
orthogonally diagonalizable.

Theorem 7.14 (Fan’s Inequality [32, 119]). For any two symmetric matrices
X,Y ∈ Sn it holds that

Tr(XY) ≤ 〈λ(X),λ(Y)〉,
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184 Chapter 7. Spectral Functions

and equality holds if and only if there exists V ∈ On for which

X = Vdiag(λ(X))VT ,

Y = Vdiag(λ(Y))VT .

7.2.1 The Spectral Conjugate Formula

A rather direct result of Fan’s inequality is the spectral conjugate formula that
shows how to compute the conjugate of a symmetric spectral function over Sn in
terms of the conjugate of its associated function.

Theorem 7.15 (spectral conjugate formula over Sn). Let f : E → (−∞,∞]
be a permutation symmetric function. Then

(f ◦ λ)∗ = f∗ ◦ λ.

Proof. Let Y ∈ S
n. Then

(f ◦ λ)∗(Y) = max
X∈Sn

{Tr(XY) − f(λ(X))}

≤ max
X∈Sn

{〈λ(X),λ(Y)〉 − f(λ(X))}

≤ max
x∈Rn

{〈x,λ(Y)〉 − f(x)}

= (f∗ ◦ λ)(Y),

where Fan’s inequality (Theorem 7.14) was used in the first inequality. To show the
reverse inequality, take a spectral decomposition of Y:

Y = Udiag(λ(Y))UT (U ∈ O
n).

Then

(f∗ ◦ λ)(Y) = max
x∈Rn

{〈x,λ(Y)〉 − f(x)}

= max
x∈Rn

{Tr(diag(x)diag(λ(Y)) − f(x)}

= max
x∈Rn

{Tr(diag(x)UTYU)− f(x↓)}

= max
x∈Rn

{Tr(diag(x)UTYU)− f(λ(Udiag(x)UT ))}

= max
x∈Rn

{Tr(Udiag(x)UTY) − f(λ(Udiag(x)UT ))}

≤ max
Z∈Sn

{Tr(ZY) − f(λ(Z))}

= (f ◦ λ)∗(Y).

Example 7.16. Using the spectral conjugate formula, we can compute the conju-
gates of the functions from the table of Example 7.13. The conjugates appear in
the following table, which also includes references to the corresponding results for
functions over Rn. The numbering is the same as in the table of Example 7.13.
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7.2. Symmetric Spectral Functions over Sn 185

# g(X) dom(g) g∗(Y) dom(g∗) Reference

1 Tr(X) Sn δ{I}(Y) {I} Section 4.4.7

2 λmax(X) Sn δΥn (Y) Υn Example 4.10

3 α‖X‖F (α > 0) Sn δB‖·‖F [0,α](Y) B‖·‖F [0, α] Section 4.4.12

4 α‖X‖2F (α > 0) Sn
1
4α

‖Y‖2F Sn Section 4.4.6

5 α‖X‖2,2 (α > 0) Sn δB‖·‖S1
[0,α](Y) B‖·‖S1

[0, α] Section 4.4.12

6 α‖X‖S1
(α > 0) Sn δB‖·‖2,2 [0,α](Y) B‖·‖2,2 [0, α] Section 4.4.12

7 − log det(X) Sn++ −n− log det(−Y) Sn−− Section 4.4.9

8
n∑

i=1

λi(X) log(λi(X)) Sn+

n∑
i=1

eλi(Y)−1
Sn Section 4.4.8

9
n∑

i=1

λi(X) log(λi(X)) Υn log
(∑n

i=1 e
λi(Y)

)
Sn Section 4.4.10

The spectral conjugate formula has several important consequences, one of
which is the following theorem stating that a symmetric spectral function is closed
and convex if and only if its associated function is closed and convex.

Theorem 7.17 (closedness and convexity of symmetric spectral functions
over Sn). Let F : Sn → (−∞,∞] be given by F = f ◦λ, where f : Rn → (−∞,∞]
is a permutation symmetric proper function. Then F is closed and convex if and
only if f is closed and convex.

Proof. By the spectral conjugate formula (Theorem 7.15),

F ∗ = (f ◦ λ)∗ = f∗ ◦ λ.
Since by the symmetric conjugate theorem (Theorem 7.9) f∗ is permutation sym-
metric, we can invoke once again the spectral conjugate formula to obtain

F ∗∗ = (f∗ ◦ λ)∗ = f∗∗ ◦ λ. (7.2)

If f is closed and convex, then by Theorem 4.8 (taking also into account the proper-
ness of f), it follows that f∗∗ = f . Therefore, by (7.2),

F ∗∗ = f ◦ λ = F.

Thus, since F is a conjugate of another function (F ∗), it follows by Theorem 4.3
that it is closed and convex. Now assume that F is closed and convex. Since F is
in addition proper, it follows by Theorem 4.8 that F ∗∗ = F , which, combined with
(7.2), yields the equality

f ◦ λ = F = F ∗∗ = f∗∗ ◦ λ.
Therefore, for any x ∈ Rn

f(x↓) = f(λ(diag(x))) = f∗∗(λ(diag(x))) = f∗∗(x↓).

By the permutation symmetry property of both f and f∗∗, it follows that f(x↓) =
f(x) and f∗∗(x↓) = f∗∗(x), and we thus obtained that f(x) = f∗∗(x) for any

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



186 Chapter 7. Spectral Functions

x ∈ Rn, meaning that f = f∗∗. Therefore, f , as a conjugate of another function
(f∗) is closed and convex.

7.2.2 The Proximal Operator of Symmetric Spectral Functions
over Sn

The next result shows a simple formula for computing the prox operator of a sym-
metric spectral function over Sn which is also proper closed and convex. The prox
is expressed in terms of the spectral decomposition of the argument and the prox
operator of the associated function.

Theorem 7.18 (spectral prox formula over Sn). Let F : Sn → (−∞,∞] be
given by F = f ◦ λ, where f : Rn → (−∞,∞] is a permutation symmetric proper
closed and convex function. Let X ∈ S

n, and suppose that X = Udiag(λ(X))UT ,
where U ∈ On. Then

proxF (X) = Udiag(proxf (λ(X)))UT .

Proof. Recall that

proxF (X) = argminZ∈Sn

{
F (Z) +

1

2
‖Z−X‖2F

}
. (7.3)

Denoting D = diag(λ(X)), we note that for any Z ∈ Sn,

F (Z) +
1

2
‖Z−X‖2F = F (Z) +

1

2
‖Z−UDUT ‖2F

(∗)
= F (UTZU) +

1

2
‖UTZU−D‖2F ,

where the transition (∗) is due to the fact that F (Z) = f(λ(Z)) = f(λ(UTZU)) =
F (UTZU). Making the change of variables W = UTZU, we conclude that the
optimal solution of (7.3) is given by

Z = UW∗UT , (7.4)

where W∗ ∈ Sn is the unique optimal solution of

min
W∈Sn

{
G(W) ≡ F (W) +

1

2
‖W −D‖2F

}
. (7.5)

We will prove that W∗ is diagonal. Let i ∈ {1, 2, . . . , n}. TakeVi to be the diagonal
matrix whose diagonal elements are all ones except for the (i, i)th component, which

is −1. Define W̃i = ViW
∗VT

i . Obviously, by the fact that Vi ∈ On,

F (ViW
∗VT

i ) = f(λ(ViW
∗VT

i )) = f(λ(W∗)) = F (W∗),

and we thus obtain

G(W̃i) = F (W̃i) +
1

2
‖W̃i −D‖2F

= F (ViW
∗VT

i ) +
1

2
‖ViW

∗VT
i −D‖2F

= F (W∗) +
1

2
‖W∗ −VT

i DVi‖2F
(∗∗)
= F (W∗) +

1

2
‖W∗ −D‖2F ,

= G(W∗),
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7.2. Symmetric Spectral Functions over Sn 187

where (**) follows from the fact that Vi and D are both diagonal, and hence

VT
i DVi = VT

i ViD = D. We conclude that W̃i is also an optimal solution, but
by the uniqueness of the optimal solution of problem (7.5), it follows that W∗ =
ViW

∗VT
i . Comparing the ith rows of the two matrices, we deduce that W ∗ij = 0

for any j 
= i. Since this argument is valid for any i ∈ {1, 2, . . . , n}, it follows that
W∗ is a diagonal matrix, and consequently the optimal solution of (7.5) is given by
W∗ = diag(w∗), where w∗ is the optimal solution of

min
w

{
F (diag(w)) +

1

2
‖diag(w) −D‖2F

}
.

Since F (diag(w)) = f(w↓) = f(w) and ‖diag(w)−D‖2F = ‖w−λ(X)‖22, it follows
that w∗ is given by

w∗ = argminw

{
f(w) +

1

2
‖w− λ(X)‖22

}
= proxf (λ(X)).

Therefore, W∗ = diag(proxf (λ(X))), which, along with (7.4), establishes the de-
sired result.

Example 7.19. Using the spectral prox formula, we can compute the prox of
symmetric spectral functions in terms of the prox of their associated functions.
Using this observation, we present in the table below expressions of prox operators
of several functions. The parameter α is always assumed to be positive, and U is
assumed to be an orthogonal matrix satisfying X = Udiag(λ(X))UT . The table
also includes references to the corresponding results for the associated functions,
which are always defined over Rn.

F (X) dom(F ) proxF (X) Reference

α‖X‖2F Sn
1

1+2α
X Section 6.2.3

α‖X‖F Sn
(
1− α

max{‖X‖F ,α}
)
X Example 6.19

α‖X‖S1
Sn Udiag(Tα(λ(X)))UT Example 6.8

α‖X‖2,2 Sn Udiag(λ(X)− αPB‖·‖1 [0,1]
(λ(X)/α))UT Example 6.48

−α log det(X) Sn++ Udiag

(
λj(X)+

√
λj(X)2+4α

2

)
UT Example 6.9

αλ1(X) Sn Udiag(λ(X) − αPΔn(λ(X)/α))UT Example 6.49

α
∑k

i=1 λi(X) Sn X− αUdiag(PC(λ(X)/α))UT ,
C = He,k ∩Box[0,e]

Example 6.50

A set T ⊆ Sn is called a symmetric spectral set in Sn if the indicator function δT
is a symmetric spectral function over Sn, meaning that it has the form δT = δC ◦λ,
where δC is a permutation symmetric function. The set C ⊆ Rn is the associated
set. Since proxδT = PT and proxδC = PC , it follows by the spectral prox formula
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188 Chapter 7. Spectral Functions

that if C is nonempty closed and convex, then

PT (X) = Udiag(PC(λ(X)))UT , X ∈ S
n, (7.6)

where U is an orthogonal matrix satisfying X = Udiag(λ(X))UT .

Example 7.20. Using formula (7.6), we present in the following table expressions
for the orthogonal projection onto several symmetric spectral sets in S

n. The table
also includes references to the corresponding results on orthogonal projections onto
the associated subsets of Rn. The matrix U is assumed to be an orthogonal matrix
satisfying X = Udiag(λ(X))UT .

set (T ) PT (X) Assumptions Reference

S
n
+ Udiag([λ(X)]+)UT − Lemma 6.26

{X : I � X � uI} Udiag(v)UT ,  ≤ u Lemma 6.26

vi = min{max{λi(X), }, u}

B‖·‖F [0, r] r
max{‖X‖F ,r}X r > 0 Lemma 6.26

{X : Tr(X) ≤ b} Udiag(v)UT , v = λ(X)− [eT λ(X)−b]+
n e b ∈ R Lemma 6.26

Υn Udiag(v)UT , v = [λ(X) − μ∗e]+ where

μ∗ ∈ R satisfies eT [λ(X)− μ∗e]+ = 1

– Corollary 6.29

B‖·‖S1
[0, α]

⎧⎨
⎩ X, ‖X‖S1 ≤ α,

Udiag(Tβ∗ (λ(X)))UT , ‖X‖S1 > α,

‖Tβ∗ (λ(X))‖1 = α, β∗ > 0

α > 0 Example 6.33

7.3 Symmetric Spectral Functions over R
m×n

Let m,n be two positive integers and r = min{m,n}. We will denote by σ :
Rm×n → Rr the singular values function that assigns to each matrix X ∈ Rm×n

the vector of singular values (σ1(X), σ2(X), . . . , σr(X))T , where σ1(X) ≥ σ2(X) ≥
· · · ≥ σr(X) ≥ 0. We will also require the following notation. For a vector v ∈ Rr,
the matrix dg(v) is the m× n matrix defined by

dg(v)i,j =

⎧⎪⎨⎪⎩ vi, i = j,

0 else.

The operator dg(·) maps r-dimensional vectors to generalized38 m × n diagonal
matrices. The integers m and n (and hence also r) will be fixed throughout this
section, and hence there is no need to indicate their values in the operator dg. We
do not use the “diag” notation since it is reserved to square diagonal matrices.

It is well known (see Golub and Van Loan [60, Theorem 2.5.2]) that any matrix
X ∈ Rm×n has a singular value decomposition, meaning matrices U ∈ Om,V ∈ On

for which X = Udg(σ(X))VT .

38A matrix X ∈ Rm×n is a generalized diagonal matrix if Xij = 0 for any i �= j.
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7.3. Symmetric Spectral Functions over Rm×n 189

The analysis in this section uses very similar arguments to those used in the
previous section; however, for the sake of completeness we will provide the results
with their complete proofs.

We begin by formally defining the notion of spectral functions over Rm×n.

Definition 7.21 (spectral functions over Rm×n). A proper function g :
Rm×n → (−∞,∞] is called a spectral function over Rm×n if there exists a
proper function f : Rr → (−∞,∞] for which g = f ◦ σ.

Similarly to the notation in Section 7.2, if g = f ◦σ, we will refer to f (which
is actually not necessarily unique) as the associated function. Our main interest will
be with spectral functions whose associated functions are absolutely permutation
symmetric.

Definition 7.22 (symmetric spectral functions over Rm×n). A proper func-
tion f : Rm×n → (−∞,∞] is called a symmetric spectral function over
Rm×n if there exists a proper absolutely permutation symmetric function f : Rr →
(−∞,∞] for which g = f ◦ σ.

Example 7.23 (Schatten p-norms). Let p ∈ [1,∞]. Then the Schatten p-norm
is the norm defined by

‖X‖Sp ≡ ‖σ(X)‖p, X ∈ R
m×n.

It is well known39 that ‖ ·‖Sp is indeed a norm for any p ∈ [1,∞]. Specific examples
are the following:

• trace-norm (Schatten 1-norm)—also called the nuclear norm:

‖X‖S1 =

r∑
i=1

σi(X).

• spectral norm (Schatten ∞-norm):

‖X‖S∞ = σ1(X) = ‖X‖2,2.

• Frobenius norm (Schatten 2-norm):

‖X‖S2 =

√√√√ r∑
i=1

σi(X)2 =
√
Tr(XTX).

The Schatten p-norm is a symmetric spectral function over Rm×n whose associ-
ated function is the lp-norm on Rr, which is obviously an absolutely permutation
symmetric function.

39See, for example, Horn and Johnson [70].
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190 Chapter 7. Spectral Functions

Example 7.24 (Ky Fan k-norms). Recall the notation from Example 6.51—
given a vector x ∈ Rr, x〈i〉 is the component of x with the ith largest absolute
value, meaning in particular that

|x〈1〉| ≥ |x〈2〉| ≥ · · · ≥ |x〈r〉|.

The function fk(x) =
∑k
i=1 |x〈i〉| is an absolutely permutation symmetric function.

The corresponding symmetric spectral function is the so-called Ky Fan k-norm
given by

‖X‖〈k〉 = fk(σ(X)) =

k∑
i=1

σi(X).

Obviously, ‖ · ‖〈1〉 is the spectral norm, which is also the Schatten ∞-norm; the
norm ‖ · ‖〈r〉 is the trace-norm, which is also the Schatten 1-norm.

A key inequality that is used in the analysis of spectral functions over Rm×n

is an inequality bounding the inner product of two matrices via the inner product
of their singular vectors. The inequality, which is credited to von Neumann and is
in a sense the “Rm×n-counterpart” of Fan’s inequality (Theorem 7.14).

Theorem 7.25 (von Neumann’s trace inequality [123]). For any two matrices
X,Y ∈ Rm×n, the inequality

〈X,Y〉 ≤ 〈σ(X),σ(Y)〉

holds. Equality holds if and only if there exists a simultaneous nonincreasing sin-
gular value decomposition of X,Y, meaning that there exist U ∈ Om and V ∈ On

for which

X = Udg(σ(X))VT ,

Y = Udg(σ(Y))VT .

7.3.1 The Spectral Conjugate Formula

A direct result of von Neumann’s trace inequality is the spectral conjugate formula
over Rm×n.

Theorem 7.26 (spectral conjugate formula over Rm×n). Let f : E →
(−∞,∞] be an absolutely permutation symmetric function. Then

(f ◦ σ)∗ = f∗ ◦ σ.

Proof. Let Y ∈ Rm×n. Then

(f ◦ σ)∗(Y) = max
X∈Rm×n

{Tr(XY) − f(σ(X))}

≤ max
X∈Rm×n

{〈σ(X),σ(Y)〉 − f(σ(X))}

≤ max
x∈Rr

{〈x,σ(Y)〉 − f(x)}

= (f∗ ◦ σ)(Y),
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7.3. Symmetric Spectral Functions over Rm×n 191

where Von Neumann’s trace inequality (Theorem 7.25) was used in the first in-
equality. To show the reverse inequality, take a singular value decomposition of
Y:

Y = Udg(σ(Y))VT (U ∈ O
m,V ∈ O

n).

Then

(f∗ ◦ σ)(Y) = max
x∈Rr

{〈x,σ(Y)〉 − f(x)}

= max
x∈Rr

{Tr(dg(x)T dg(σ(Y))) − f(x)}

= max
x∈Rr

{Tr(dg(x)TUTYV) − f(x↓)}

= max
x∈Rr

{Tr(dg(x)TUTYV) − f(σ(Udg(x)VT ))}

= max
x∈Rr

{Tr(Vdg(x)TUTY)− f(σ(Udg(x)VT ))}

≤ max
Z∈Rm×n

{Tr(ZTY) − f(σ(Z))}

= (f ◦ σ)∗(Y).

Example 7.27. Using the spectral conjugate formula over Rm×n, we present below
expressions for the conjugate functions of several symmetric spectral functions over
Rm×n (all with full domain). The table also includes the references to the corre-
sponding results on functions over Rr. The constant α is assumed to be positive.

g(X) dom(g) g∗(Y) dom(g∗) Reference

ασ1(X) (α > 0) Rm×n δB‖·‖S1
[0,α](Y) B‖·‖S1

[0, α] Section 4.4.12

α‖X‖F (α > 0) Rm×n δB‖·‖F [0,α](Y) B‖·‖F [0, α] Section 4.4.12

α‖X‖2F (α > 0) Rm×n 1
4α

‖Y‖2F Rm×n Section 4.4.6

α‖X‖S1
(α > 0) Rm×n δB‖·‖S∞ [0,α](Y) B‖·‖S∞ [0, α] Section 4.4.12

The spectral conjugate formula can be used to show that a symmetric spectral
function over R

m×n is closed and convex if and only if its associated function is
closed and convex.

Theorem 7.28 (closedness and convexity of symmetric spectral functions
over Rm×n). Let F : Rm×n → (−∞,∞] be given by F = f ◦ σ, where f : Rr →
(−∞,∞] is an absolutely permutation symmetric proper function. Then F is closed
and convex if and only if f is closed and convex.

Proof. By the spectral conjugate formula (Theorem 7.26),

F ∗ = (f ◦ σ)∗ = f∗ ◦ σ.
Since by the symmetric conjugate theorem (Theorem 7.9) f∗ is absolutely permuta-
tion symmetric, we can invoke once again the spectral conjugate formula to obtain

F ∗∗ = (f∗ ◦ σ)∗ = f∗∗ ◦ σ. (7.7)
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192 Chapter 7. Spectral Functions

If f is closed and convex, then by Theorem 4.8 (taking also in account the properness
of f) it follows that f∗∗ = f . Therefore, by (7.7),

F ∗∗ = f ◦ σ = F.

Thus, since F is a conjugate of another function (F ∗), it follows by Theorem 4.3
that it is closed and convex. Now assume that F is closed and convex. Since F is
in addition proper, it follows by Theorem 4.8 that F ∗∗ = F , which, combined with
(7.7), yields the equality

f ◦ σ = F = F ∗∗ = f∗∗ ◦ σ.

Therefore, for any x ∈ R
r,

f(|x|↓) = f(σ(dg(x))) = f∗∗(σ(dg(x))) = f∗∗(|x|↓).

By the absolutely permutation symmetry property of both f and f∗∗, it follows
that f(|x|↓) = f(x) and f∗∗(|x|↓) = f∗∗(x), and therefore f(x) = f∗∗(x) for any
x ∈ Rr, meaning that f = f∗∗. Therefore, f , as a conjugate of another function
(f∗), is closed and convex.

7.3.2 The Proximal Operator of Symmetric Spectral Functions
over Rm×n

The next result shows a simple formula for computing the prox operator of a sym-
metric spectral function over Rm×n, which is also proper closed and convex. The
prox is expressed in terms of the singular value decomposition of the argument and
the prox operator of the associated function.

Theorem 7.29 (spectral prox formula over Rm×n). Let F : Rm×n → (−∞,∞]
be given by F = f ◦ σ, where f : Rr → (−∞,∞] is an absolutely permutation
symmetric proper closed and convex function. Let X ∈ Rm×n, and suppose that
X = Udg(σ(X))VT , where U ∈ Om,V ∈ On. Then

proxF (X) = Udg(proxf (σ(X)))VT .

Proof. Recall that

proxF (X) = argminZ∈Rm×n

{
F (Z) +

1

2
‖Z−X‖2F

}
. (7.8)

Denoting D = dg(σ(X)), we note that for any Z ∈ Rm×n,

F (Z) +
1

2
‖Z−X‖2F = F (Z) +

1

2
‖Z−UDVT ‖2F

(∗)
= F (UTZV) +

1

2
‖UTZV−D‖2F ,

where the transition (∗) is due to the fact that F (Z) = f(σ(Z)) = f(σ(UTZV)) =
F (UTZV). Making the change of variables W = UTZV, we conclude that the
unique optimal solution of (7.8) is given by

Z = UW∗VT , (7.9)
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7.3. Symmetric Spectral Functions over Rm×n 193

where W∗ is the unique optimal solution of

min
W∈Rm×n

{
G(W) ≡ F (W) +

1

2
‖W −D‖2F

}
. (7.10)

We will prove that W∗ is a generalized diagonal matrix (meaning that all off-

diagonal components are zeros). Let i ∈ {1, 2, . . . , r}. Take Σ
(1)
i ∈ Rm×m and

Σ
(2)
i ∈ Rn×n to be the m × m and n × n diagonal matrices whose diagonal ele-

ments are all ones except for the (i, i)th component, which is −1. Define W̃i =

Σ
(1)
i W∗Σ

(2)
i . Obviously, by the fact that Σ

(1)
i ∈ O

m,Σ
(2)
i ∈ O

n,

F (Σ
(1)
i W∗Σ

(2)
i ) = f(σ(Σ

(1)
i W∗Σ

(2)
i )) = f(σ(W∗)) = F (W∗),

and we thus obtain

G(W̃i) = F (W̃i) +
1

2
‖W̃i −D‖2F

= F (Σ
(1)
i W∗Σ

(2)
i ) +

1

2
‖Σ(1)

i W∗Σ
(2)
i −D‖2F

= F (W∗) +
1

2
‖W∗ −Σ

(1)
i DΣ

(2)
i ‖2F

= F (W∗) +
1

2
‖W∗ −D‖2F ,

= G(W∗).

Consequently, W̃i is also an optimal solution of (7.10), but by the uniqueness

of the optimal solution of problem (7.10), we conclude that W∗ = Σ
(1)
i W∗Σ

(2)
i .

Comparing the ith rows and columns of the two matrices we obtain that W ∗ij = 0
and W ∗ji = 0 for any j 
= i. Since this argument is valid for any i ∈ {1, 2, . . . , r},
it follows that W∗ is a generalized diagonal matrix, and consequently the optimal
solution of (7.10) is given by W∗ = dg(w∗), where w∗ is the optimal solution of

min
w

{
F (dg(w)) +

1

2
‖dg(w)−D‖2F

}
.

Since F (dg(w)) = f(|w|↓) = f(w) and ‖dg(w) − D‖2F = ‖w − σ(X)‖22, it follows
that w∗ is given by

w∗ = argminw

{
f(w) +

1

2
‖w − σ(X)‖22

}
= proxf (σ(X)).

Therefore, W∗ = dg(proxf (σ(X))), which, along with (7.9), establishes the desired
result.

Example 7.30. Using the spectral prox formula over Rm×n, we can compute
the prox of symmetric spectral functions in terms of the prox of their associated
functions. Using this observation, we present in the table below expressions of prox
operators of several functions. The parameter α is always assumed to be positive,
and U ∈ Om,V ∈ On are assumed to satisfy X = Udg(σ(X))VT . The table also
includes a reference to the corresponding results for the associated functions, which
are always defined over Rr.
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194 Chapter 7. Spectral Functions

F (X) proxF (X) Reference

α‖X‖2F
1

1+2α
X Section 6.2.3

α‖X‖F
(
1− α

max{‖X‖F ,α}
)
X Example 6.19

α‖X‖S1
Udg(Tα(σ(X)))VT Example 6.8

α‖X‖S∞ X− αUdg(PB‖·‖1 [0,1]
(σ(X)/α))VT Example 6.48

α‖X‖〈k〉 X− αUdg(PC(σ(X)/α))VT , Example 6.51

C = B‖·‖1 [0, k] ∩ B‖·‖∞ [0, 1]

Note that ‖X‖S∞ can be written as either σ1(X) or ‖X‖2,2.

A set T ⊆ Rm×n is called a symmetric spectral set in Rm×n if the indicator
function δT is a symmetric spectral function over Rm×n, meaning that it has the
form δT = δC ◦σ, where δC is an absolutely permutation symmetric function. The
set C ⊆ Rm×n is the associated set. Since proxδT = PT and proxδC = PC , it follows
by the spectral prox formula that if C is nonempty closed and convex, then

PT (X) = Udg(PC(σ(X)))VT , X ∈ R
m×n, (7.11)

where U ∈ Om,V ∈ On are assumed to satisfy X = Udg(σ(X))VT .

Example 7.31. Using formula (7.11), we present in the following table expressions
for the orthogonal projection onto several symmetric spectral sets in R

m×n. The
table also includes references to the corresponding results on the orthogonal projec-
tion onto the associated subset of Rr. The matrices U ∈ Om,V ∈ On are assumed
to satisfy X = Udg(σ(X))VT .

set (T ) PT (X) Assumptions Reference

B‖·‖S∞ [0, α] Udg(v)VT , vi = min{σi(X), α} α > 0 Lemma 6.26

B‖·‖F [0, r] r
max{‖X‖F ,r}X r > 0 Lemma 6.26

B‖·‖S1
[0, α]

⎧⎨
⎩ X, ‖X‖S1 ≤ α,

Udg(Tβ∗ (σ(X)))VT , ‖X‖S1 > α,

‖Tβ∗(σ(X))‖1 = α, β∗ > 0

α > 0 Example 6.33
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Chapter 8

Primal and Dual
Projected Subgradient
Methods

Underlying Space: In this chapter E is a Euclidean space, meaning a finite
dimensional space endowed with an inner product 〈·, ·〉 and the Euclidean norm
‖ · ‖ =

√
〈·, ·〉.

8.1 From Gradient Descent to Subgradient Descent

8.1.1 Descent Directions?

Consider the unconstrained problem

(P) min{f(x) : x ∈ E}.
If f is differentiable over E, then a well-known method for solving problem (P) is
the gradient method, also known as steepest descent, which takes the form

xk+1 = xk − tk∇f(xk), (8.1)

where tk is an appropriately chosen stepsize. A key property of the direction of
the negative of the gradient is that it is a descent direction, a notion that is now
recalled.

Definition 8.1 (descent direction). Let f : E → (−∞,∞] be an extended real-
valued function, and let x ∈ int(dom(f)). A vector 0 
= d ∈ E is called a descent
direction of f at x if the directional derivative f ′(x;d) exists and is negative.

An important property of descent directions, which can be directly deduced
from their definition, is that taking small enough steps along these directions leads
to a decrease in function value.

Lemma 8.2 (descent property of descent directions [10, Lemma 4.2]). Let
f : E → (−∞,∞] be an extended real-valued function. Let x ∈ int(dom(f)), and
assume that 0 
= d ∈ E is a descent direction of f at x. Then there exists ε > 0
such that x+ td ∈ dom(f) and

f(x+ td) < f(x)

for any t ∈ (0, ε].

195
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196 Chapter 8. Primal and Dual Projected Subgradient Methods

Coming back to the gradient method, we note that the directional derivative
of f at xk in the direction of −∇f(xk) is negative as long as ∇f(xk) 
= 0:

f ′(xk;−∇f(xk)) = 〈∇f(xk),−∇f(xk)〉 = −‖∇f(xk)‖2 < 0, (8.2)

where Theorem 3.29 was used in the first equality. We have thus shown that
−∇f(xk) is a descent direction of f at xk, which by Lemma 8.2 implies that there
exists ε > 0 such that f(xk − t∇f(xk)) < f(xk) for any t ∈ (0, ε]. In particular,
this means that tk can always be chosen in a way that guarantees a decrease in the
function value from one iteration to the next. For example, one choice of stepsize
that guarantees descent is the exact line search strategy in which tk is chosen as

tk ∈ argmint≥0f(x
k − t∇f(xk)).

If f is not differentiable, then scheme (8.1) is not well defined. Under our convexity
assumption, a natural generalization to the nonsmooth case will consist in replacing
the gradient by a subgradient (assuming that it exists):

xk+1 = xk − tkg
k, gk ∈ ∂f(xk), (8.3)

where we assume that the choice of the subgradient from ∂f(xk) is arbitrary. The
scheme (8.3) is called the subgradient method. One substantial difference between
the gradient and subgradient methods is that the direction of minus the subgradient
is not necessarily a descent direction. This means that tk cannot be chosen in a
way that will guarantee a descent property in function values of the scheme (8.3).

Example 8.3 (non-descent subgradient direction).40 Consider the function
f : R× R → R given by f(x1, x2) = |x1|+ 2|x2|. Then

∂f(1, 0) = {(1, x) : |x| ≤ 2}.

In particular, (1, 2) ∈ ∂f(1, 0). However, the direction −(1, 2) is not a descent
direction. To show this, note that for any t > 0,

g(t) ≡ f((1, 0)−t(1, 2)) = f(1−t,−2t) = |1−t|+4t =

⎧⎪⎨⎪⎩ 1 + 3t, t ∈ (0, 1],

5t− 1, t ≥ 1.
(8.4)

In particular,

f ′((1, 0);−(1, 2)) = g′+(0) = 3 > 0,

showing that −(1, 2) is not a descent direction. It is also interesting to note that
by (8.4), it holds that

f((1, 0)− t(1, 2)) ≥ 1 = f(1, 0) for any t > 0,

which actually shows that there is no point in the ray {(1, 0)− t(1, 2) : t > 0} with
a smaller function value than (1, 0).

40Example 8.3 is taken from Vandenberghe’s lecture notes [122].
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8.1. From Gradient Descent to Subgradient Descent 197

8.1.2 Wolfe’s Example

To better understand the effect of nonsmoothness, we recall a famous example of
Wolfe. The example deals with the gradient method employed on a nonsmooth
convex function with stepsizes chosen by exact line search. The function is dif-
ferentiable at all the iterate vectors generated by the method, which in particular
means that all the directions picked by the method are descent directions, and the
sequence of function values strictly decreases. However, although it seems that the
nonsmoothness is “bypassed,” this is hardly the case. The sequence generated by
the method converges to a nonoptimal point.

Let γ > 1, and consider the function f : R× R → R given by

f(x1, x2) =

⎧⎪⎨⎪⎩
√
x21 + γx22, |x2| ≤ x1,

x1+γ|x2|√
1+γ

else.
(8.5)

We begin by showing in Lemma 8.5 below that the function f is closed and convex
and describe its subdifferential set at any point in R×R. For that, we will prove that
f is actually a support function of a closed and convex set.41 The proof of Lemma
8.5 uses the following simple technical lemma, whose trivial proof is omitted.

Lemma 8.4. Consider the problem

(P) max{g(y) : f1(y) ≤ 0, f2(y) ≤ 0},

where g : E → R is concave and f1, f2 : E → R are convex. Assume that the
problem max{g(y) : f1(y) ≤ 0} has a unique solution ỹ. Let Y ∗ be the optimal set
of problem (P). Then exactly one of the following two options holds:

(i) f2(ỹ) ≤ 0, and in this case Y ∗ = {ỹ}.

(ii) f2(ỹ) > 0, and in this case Y ∗ = argmax{g(y) : f1(y) ≤ 0, f2(y) = 0}.

Lemma 8.5. Let f be given by (8.5). Then

(a) f = σC , where

C =

{
(y1, y2) ∈ R× R : y21 +

y22
γ

≤ 1, y1 ≥ 1√
1 + γ

}
;

(b) f is closed and convex;

(c)

∂f(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C, x1 = x2 = 0,

(x1,γx2)√
x2
1+γx

2
2

, |x2| ≤ x1, x1 
= 0,(
1√
1+γ

, γsgn(x2)√
1+γ

)
, |x2| > x1, x2 
= 0,{

1√
γ+1

}
×
[
− γ√

1+γ
, γ√

1+γ

]
, x2 = 0, x1 < 0.

41Recall that support functions of nonempty sets are always closed and convex (Lemma 2.23).
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198 Chapter 8. Primal and Dual Projected Subgradient Methods

Proof. By the definition of support functions,

σC(x1, x2) = max
y1,y2

{
x1y1 + x2y2 : y21 +

y22
γ

≤ 1, y1 ≥ 1√
1 + γ

}
. (8.6)

Note that if (x1, x2) = (0, 0), then σC(x1, x2) = 0 and

argmaxy1,y2

{
x1y1 + x2y2 : y21 +

y22
γ

≤ 1, y1 ≥ 1√
1 + γ

}
= C.

Assume that (x1, x2) 
= (0, 0). Denoting g(y1, y2) = x1y1 + x2y2, f1(y1, y2) =

y21 +
y22
γ − 1 and f2(y1, y2) = −y1 + 1√

1+γ
, problem (8.6) becomes

max
y1,y2

{g(y1, y2) : f1(y1, y2) ≤ 0, f2(y1, y2) ≤ 0}.

The assumptions made in Lemma 8.4 are all met: g is concave, f1, f2 are convex,
and the optimal solution of

max
y1,y2

{g(y1, y2) : f1(y1, y2) ≤ 0}

is unique and equal to (ỹ1, ỹ2) = (x1,γx2)√
x2
1+γx

2
2

. Thus, by Lemma 8.4, there are two

options:

Case I: f2(ỹ1, ỹ2) ≤ 0, meaning that x1√
x2
1+γx

2
2

≥ 1√
1+γ

. It can be easily seen that

the last inequality is equivalent to the condition |x2| ≤ x1. Under this condition,

by Lemma 8.4, (ỹ1, ỹ2) =
(x1,γx2)√
x2
1+γx

2
2

is the unique optimal solution of problem (8.6)

with a corresponding function value of σC(x1, x2) =
√
x21 + γx22.

Case II: f2(ỹ1, ỹ2) > 0, which is the same as x1 < |x2|. In this case, by Lemma
8.4, all the optimal solutions of problem (8.6) satisfy y1 = 1√

1+γ
, and the problem

thus amounts to

max
y2

{
1√
1 + γ

x1 + x2y2 : y22 ≤ γ2

1 + γ

}
.

The set of maximizers of the above problem is either
{γsgn(x2)√

1+γ

}
if x2 
= 0 or[

− γ√
1+γ

, γ√
1+γ

]
if x2 = 0. In both options, σC(x1, x2) =

x1+γ|x2|√
1+γ

.

To summarize, we have shown that

σC(x1, x2) =

⎧⎪⎨⎪⎩
√
x21 + γx22, |x2| ≤ x1,

x1+γ|x2|√
1+γ

else,

establishing part (a), meaning that f = σC . Therefore, f , as a support function,
is a closed and convex function, and we have thus established part (b) as well. To
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8.1. From Gradient Descent to Subgradient Descent 199

prove part (c), note that we also showed that

argmaxy1,y2{x1y1 + x2y2 : (y1, y2) ∈ C}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C, x1 = x2 = 0,

(x1,γx2)√
x2
1+γx

2
2

, |x2| ≤ x1, x1 
= 0,(
1√
1+γ

, γsgn(x2)√
1+γ

)
, |x2| > x1, x2 
= 0,{

1√
γ+1

}
×
[
− γ√

1+γ
, γ√

1+γ

]
, x2 = 0, x1 < 0.

Combining this with the conjugate subgradient theorem (Corollary 4.21), as well as
Example 4.9 and the closedness and convexity of C, implies

∂f(x1, x2) = ∂σC(x1, x2)

= argmaxy1,y2{x1y1 + x2y2 − σ∗C(y1, y2)}
= argmaxy1,y2{x1y1 + x2y2 − δC(y1, y2)}
= argmaxy1,y2{x1y1 + x2y2 : (y1, y2) ∈ C}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

C, x1 = x2 = 0,

(x1,γx2)√
x2
1+γx

2
2

, |x2| ≤ x1, x1 
= 0,(
1√
1+γ

, γsgn(x2)√
1+γ

)
, |x2| > x1, x2 
= 0,{

1√
γ+1

}
×
[
− γ√

1+γ
, γ√

1+γ

]
, x2 = 0, x1 < 0.

Note that a direct result of part (c) of Lemma 8.5 and Theorem 3.33 is that
f is not differentiable only at the nonpositive part of the x1 axis.

In the next result we will show that the gradient method with exact line search
employed on f with a certain initialization converges to the nonoptimal point (0, 0)
even though all the points generated by the gradient method are points in which f
is differentiable.

Lemma 8.6. Let {(x(k)1 , x
(k)
2 )}k≥0 be the sequence generated by the gradient method

with exact line search employed on f with initial point (x01, x
0
2) = (γ, 1), where γ > 1.

Then for any k ≥ 0,

(a) f is differentiable at (x
(k)
1 , x

(k)
2 );

(b) |x(k)2 | ≤ x
(k)
1 and x

(k)
1 
= 0;

(c) (x
(k)
1 , x

(k)
2 ) =

(
γ
(
γ−1
γ+1

)k
,
(
− γ−1
γ+1

)k)
.

Proof. We only need to show part (c) since part (b) follows directly from the expres-

sion of (x
(k)
1 , x

(k)
2 ) given in (c), and part (a) is then a consequence of Lemma 8.5(c).
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200 Chapter 8. Primal and Dual Projected Subgradient Methods

We will prove part (c) by induction. The claim is obviously correct for k = 0 by
the choice of initial point. Assume that the claim is correct for k, that is,

(x
(k)
1 , x

(k)
2 ) =

(
γ

(
γ − 1

γ + 1

)k
,

(
−γ − 1

γ + 1

)k)
.

We will prove that it is correct for k + 1, meaning that

(x
(k+1)
1 , x

(k+1)
2 ) = (βk, γk), (8.7)

where

βk = γ

(
γ − 1

γ + 1

)k+1

, γk =

(
−γ − 1

γ + 1

)k+1

.

Since |x(k)2 | ≤ x
(k)
1 and x

(k)
1 
= 0, we have f(x

(k)
1 , x

(k)
2 ) =

√
(x

(k)
1 )2 + γ(x

(k)
2 )2, and

by Lemma 8.5(c), f is differentiable at (x
(k)
1 , x

(k)
2 ) with

∇f(x(k)1 , x
(k)
2 ) =

1√
(x

(k)
1 )2 + γ(x

(k)
2 )2

(x
(k)
1 , γx

(k)
2 ).

What is important in the above formula is that ∇f(x(k)1 , x
(k)
2 ) can be written in the

form
∇f(x(k)1 , x

(k)
2 ) = αk(x

(k)
1 , γx

(k)
2 ) (8.8)

for some positive constant αk. To show the validity of (8.7), we will define g(t) ≡
f((x

(k)
1 , x

(k)
2 )− t(x

(k)
1 , γx

(k)
2 )) and prove the following two statements:

(A) (βk, γk) = (x
(k)
1 , x

(k)
2 )− 2

γ+1(x
(k)
1 , γx

(k)
2 ).

(B) g′
(

2
γ+1

)
= 0.

(A) and (B) are enough to show (8.7) since g is strictly convex. The proof of (A)
follows by the computations below:

x
(k)
1 − 2

γ + 1
x
(k)
1 =

γ − 1

γ + 1
x
(k)
1 =

γ − 1

γ + 1
γ

(
γ − 1

γ + 1

)k
= γ

(
γ − 1

γ + 1

)k+1

= βk,

x
(k)
2 − 2γ

γ + 1
x
(k)
2 =

−γ + 1

γ + 1
x
(k)
2 =

−γ + 1

γ + 1

(
−γ − 1

γ + 1

)k
=

(
−γ − 1

γ + 1

)k+1

= γk.

To prove (B), note that

g(t) = f
(
(x

(k)
1 , x

(k)
2 )− t(x

(k)
1 , γx

(k)
2 )
)
= f((1− t)x

(k)
1 , (1 − γt)x

(k)
2 )

=

√
(1− t)2(x

(k)
1 )2 + γ(1− γt)2(x

(k)
2 )2.

Therefore,

g′(t) =
(t− 1)(x

(k)
1 )2 + γ2(γt− 1)(x

(k)
2 )2√

(1 − t)2(x
(k)
1 )2 + γ(1− γt)2(x

(k)
2 )2

. (8.9)
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8.2. The Projected Subgradient Method 201

To prove that g′
(

2
γ+1

)
= 0, it is enough to show that the nominator in the last

expression is equal to zero at t = 2
γ+1 . Indeed,(

2

γ + 1
− 1

)
(x

(k)
1 )2 + γ2

(
γ · 2

γ + 1
− 1

)
(x

(k)
2 )2

=

(
−γ − 1

γ + 1

)
γ2
(
γ − 1

γ + 1

)2k

+ γ2
(
γ − 1

γ + 1

)(
−γ − 1

γ + 1

)2k

= 0.

Obviously, by Lemma 8.6, the sequence generated by the gradient method with
exact line search and initial point (γ, 1) converges to (0, 0), which is not a minimizer
of f since f is not bounded below (take x2 = 0 and x1 → −∞). Actually, (−1, 0) is
a descent direction of f at (0, 0). The contour lines of the function along with the
iterates of the gradient method are described in Figure 8.1.

0 1 2 3

0

1

2

3

Figure 8.1. Contour lines of Wolfe’s function with γ = 16
9 along with the

iterates of the gradient method with exact line search.

8.2 The Projected Subgradient Method

The main model that will be discussed in this section is

min{f(x) : x ∈ C}, (8.10)

where the following assumption will be made throughout this section.
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202 Chapter 8. Primal and Dual Projected Subgradient Methods

Assumption 8.7.

(A) f : E → (−∞,∞] is proper closed and convex.

(B) C ⊆ E is nonempty closed and convex.

(C) C ⊆ int(dom(f)).

(D) The optimal set of (8.10) is nonempty and denoted by X∗. The optimal value
of the problem is denoted by fopt.

Remark 8.8 (subdifferentiability of f and closedness of X∗). Since f is
convex and C ⊆ int(dom(f)), it follows by Theorem 3.14 that f is subdifferentiable
over C. Also, since f is closed,

X∗ = C ∩ Lev(f, fopt)

is closed. This means in particular that for any x /∈ X∗ the distance dX∗(x) is
positive.

From now on, we will use the following notation: f ′(x) will denote a certain
subgradient of f at x, meaning a member in ∂f(x). Thus, f ′ is actually a function
from C to E∗. The rule for choosing f ′(x) out of the members of ∂f(x) can be
arbitrary but has to be deterministic, meaning that if f ′(x) is evaluated twice, the
results have to be the same.

Equipped with the observations of the previous section, we can speculate that
a method which utilizes subgradients rather than gradients will not necessarily be
a descent method and will not have to be based on a line search procedure for
choosing its stepsizes. We will see that this is indeed the case for the projected
subgradient method.

8.2.1 The Method

Each iteration of the projected subgradient method consists of a step taken toward
the negative of the chosen subgradient followed by an orthogonal projection onto
the underlying set C.

Projected Subgradient Method

Initialization: pick x0 ∈ C arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick a stepsize tk > 0 and a subgradient f ′(xk) ∈ ∂f(xk);

(b) set xk+1 = PC(x
k − tkf

′(xk)).

The sequence generated by the projected subgradient method is {xk}k≥0,
while the sequence of function values generated by the method is {f(xk)}k≥0. As
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8.2. The Projected Subgradient Method 203

was already discussed, the sequence of function values is not necessarily monotone,
and we will be also interested in the sequence of best achieved function values, which
is defined by

fkbest ≡ min
n=0,1,...,k

f(xn). (8.11)

Obviously, the sequence {fkbest}k≥0 is nonincreasing.

Remark 8.9 (stopping criterion for the projected subgradient method).
In actual implementations of the projected subgradient method, a stopping criterion
has to be incorporated, but as a rule, we will not deal in this book with stopping
criteria but rather concentrate on issues of convergence.

Remark 8.10 (zero subgradients). In the unlikely case where f ′(xk) = 0 for
some k, then by Fermat’s optimality condition (Theorem 3.63), xk is a minimizer
of f over E, and since xk ∈ C, it is also a minimizer of f over C. In this situation,
the method is “stuck” at the optimal solution xk from iteration k onward, meaning
that xn = xk for all n ≥ k.

The analysis of the projected subgradient method relies on the following simple
technical lemma.

Lemma 8.11 (fundamental inequality for projected subgradient). Suppose
that Assumption 8.7 holds. Let {xk}k≥0 be the sequence generated by the projected
subgradient method. Then for any x∗ ∈ X∗ and k ≥ 0,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2tk(f(x
k)− fopt) + t2k‖f ′(xk)‖2. (8.12)

Proof.

‖xk+1 − x∗‖2 = ‖PC(xk − tkf
′(xk))− PC(x

∗)‖2
(∗)
≤ ‖xk − tkf

′(xk)− x∗‖2

= ‖xk − x∗‖2 − 2tk〈f ′(xk),xk − x∗〉+ t2k‖f ′(xk)‖2
(∗∗)
≤ ‖xk − x∗‖2 − 2tk(f(x

k)− fopt) + t2k‖f ′(xk)‖2,

where the inequality (∗) is due to the nonexpansiveness of the orthogonal projection
operator (Theorem 6.42), and (∗∗) follows by the subgradient inequality.

8.2.2 Convergence under Polyak’s Stepsize Rule

We will require an assumption in addition to Assumption 8.7 in order to prove con-
vergence of the sequence of function values generated by the projected subgradient
method.

Assumption 8.12. There exists a constant Lf > 0 for which ‖g‖ ≤ Lf for all
g ∈ ∂f(x),x ∈ C.
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204 Chapter 8. Primal and Dual Projected Subgradient Methods

Since C ⊆ int(dom(f)) (Assumption 8.7(C)), it follows by Theorem 3.61 that
Assumption 8.12 implies that f is Lipschitz continuous over C with constant Lf :

|f(x) − f(y)| ≤ Lf‖x− y‖ for all x,y ∈ C.

In addition, since (again) C ⊆ int(dom(f)), it follows by Theorem 3.16 that As-
sumption 8.12 holds if C is assumed to be compact.

One natural way to choose the stepsize tk is by taking it as the minimizer of
the right-hand side of (8.12) over tk ≥ 0:

tk =
f(xk)− fopt
‖f ′(xk)‖2 .

When f ′(xk) = 0, the above formula is not defined, and by Remark 8.10, xk is
an optimal solution of (8.10). We will artificially define tk = 1 (any other positive
number could also have been chosen). The complete formula is therefore

tk =

⎧⎪⎨⎪⎩
f(xk)−fopt
‖f ′(xk)‖2 , f ′(xk) 
= 0,

1, f ′(xk) = 0.
(8.13)

We will refer to this stepsize rule as Polyak’s stepsize rule.42

The main convergence result of the projected subgradient method with Polyak’s
stepsize rule is given in the next theorem.

Theorem 8.13 (convergence of projected subgradient with Polyak’s step-
size). Suppose that Assumptions 8.7 and 8.12 hold. Let {xk}k≥0 be the sequence
generated by the projected subgradient method with Polyak’s stepsize rule (8.13).
Then

(a) ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 for any k ≥ 0 and x∗ ∈ X∗;

(b) f(xk) → fopt as k → ∞;

(c) fkbest − fopt ≤ LfdX∗ (x0)√
k+1

for any k ≥ 0.

Proof. Let n be a nonnegative integer and x∗ ∈ X∗. By Lemma 8.11,

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − 2tn(f(x
n)− fopt) + t2n‖f ′(xn)‖2. (8.14)

If f ′(xn) 
= 0, then by substituting tn =
f(xn)−fopt
‖f ′(xn)‖2 into (8.14), it follows that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (f(xn)− fopt)
2

‖f ′(xn)‖2 .

42As the name suggests, this stepsize was first suggested by Boris T. Polyak; see, for example,
[104].
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8.2. The Projected Subgradient Method 205

Using the bound ‖f ′(xn)‖ ≤ Lf , we thus obtain

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − (f(xn)− fopt)
2

L2
f

. (8.15)

Inequality (8.15) also holds when f ′(xn) = 0, since in this case f(xn) = fopt and
xn+1 = xn. A direct result of (8.15) is that

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2,

and part (a) is thus proved (by plugging n = k). Summing inequality (8.15) over
n = 0, 1, . . . , k, we obtain that

1

L2
f

k∑
n=0

(f(xn)− fopt)
2 ≤ ‖x0 − x∗‖2 − ‖xk+1 − x∗‖2,

and thus
k∑

n=0

(f(xn)− fopt)
2 ≤ L2

f‖x0 − x∗‖2.

Since the above inequality holds for any x∗ ∈ X∗, it follows that

k∑
n=0

(f(xn)− fopt)
2 ≤ L2

fd
2
X∗(x0), (8.16)

which in particular implies that f(xn)−fopt → 0 as n → ∞, and the validity of (b) is
established. To prove part (c), note that since f(xn) ≥ fkbest for any n = 0, 1, . . . , k,
it follows that

k∑
n=0

(f(xn)− fopt)
2 ≥ (k + 1)(fkbest − fopt)

2,

which, combined with (8.16), yields

(k + 1)(fkbest − fopt)
2 ≤ L2

fd
2
X∗(x0),

and hence

fkbest − fopt ≤
LfdX∗(x0)√

k + 1
.

Remark 8.14. Note that in the convergence result of Theorem 8.13 we can replace
the constant Lf with maxn=0,1,...,k ‖f ′(xn)‖.

The property of the sequence generated by the projected subgradient method
described in part (a) of Theorem 8.13 is known as Fejér monotonicity.

Definition 8.15 (Fejér monotonicity). A sequence {xk}k≥0 ⊆ E is called Fejér
monotone w.r.t. a set S ⊆ E if

‖xk+1 − y‖ ≤ ‖xk − y‖ for all k ≥ 0 and y ∈ S.
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206 Chapter 8. Primal and Dual Projected Subgradient Methods

Since Fejér monotonicity w.r.t. a set S implies that for all k ≥ 0 and any
y ∈ S, ‖xk − y‖ ≤ ‖x0 − y‖, it follows that Fejér monotone sequences are always
bounded. We will now prove that sequences which are Fejér monotone w.r.t. sets
containing their limit points are convergent.

Theorem 8.16 (convergence under Fejér monotonicity). Let {xk}k≥0 ⊆ E

be a sequence, and let S be a set satisfying D ⊆ S, where D is the set comprising
all the limit points of {xk}k≥0. If {xk}k≥0 is Fejér monotone w.r.t. S, then it
converges to a point in D.

Proof. Since {xk}k≥0 is Fejér monotone, it is also bounded and hence has limit
points. Let x̃ be a limit point of the sequence {xk}k≥0, meaning that there exists a
subsequence {xkj}j≥0 such that xkj → x̃. Since x̃ ∈ D ⊆ S, it follows by the Fejér
monotonicity w.r.t. S that for any k ≥ 0,

‖xk+1 − x̃‖ ≤ ‖xk − x̃‖.

Thus, {‖xk− x̃‖}k≥0 is a nonincreasing sequence which is bounded below (by zero)
and hence convergent. Since ‖xkj − x̃‖ → 0 as j → ∞, it follows that the whole se-
quence {‖xk − x̃‖}k≥0 converges to zero, and consequently xk → x̃ as k → ∞.

Equipped with the last theorem, we can now prove convergence of the sequence
generated by the projected subgradient method with Polyak’s stepsize rule.

Theorem 8.17 (convergence of the sequence generated by projected sub-
gradient with Polyak’s stepsize rule). Suppose that Assumptions 8.7 and 8.12
hold. Let {xk}k≥0 be the sequence generated by the projected subgradient method
with Polyak’s stepsize rule (8.13). Then {xk}k≥0 converges to a point in X∗.

Proof. By Theorem 8.13(a), the sequence is Fejér monotone w.r.t. X∗. Therefore,
by Theorem 8.16, to show convergence to a point in X∗, it is enough to show that
any limit point of the sequence is necessarily in X∗ (that is, an optimal solution
of the problem). Let then x̃ be a limit point of the sequence. Then there exists a
subsequence {xkj}j≥0 converging to x̃. By the closedness of C, x̃ ∈ C. By Theorem
8.13(b),

f(xkj ) → fopt as j → ∞. (8.17)

Since x̃ ∈ C ⊆ int(dom(f)), it follows by Theorem 2.21 that f is continuous at x̃,
which, combined with (8.17), implies that f(x̃) = fopt, meaning that x̃ ∈ X∗.

Part (c) of Theorem 8.13 provides an upper bound on the rate of convergence
in which the sequence {fkbest}k≥0 converges to fopt. Specifically, the result shows
that the distance of fkbest to fopt is bounded above by a constant factor of 1√

k+1

with k being the iteration index. We will sometimes refer to it as an “O(1/
√
k) rate

of convergence result” with a slight abuse of the “big O” notation (which actually
refers to asymptotic results). We can also write the rate of convergence result as a
complexity result. For that, we first introduce the concept of an ε-optimal solution.
A vector x ∈ C is called an ε-optimal solution of problem (8.10) if f(x)− fopt ≤ ε.
In complexity analysis, the following question is asked: how many iterations are
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8.2. The Projected Subgradient Method 207

required to obtain an ε-optimal solution? That is, how many iterations are required
to obtain the condition

fkbest − fopt ≤ ε? (8.18)

Using Theorem 8.13(c), it follows that a sufficient condition for (8.18) to hold is the
following inequality:

LfdX∗(x0)√
k + 1

≤ ε, (8.19)

which is the same as

k ≥
L2
fd

2
X∗(x0)

ε2
− 1.

Therefore, an order of 1
ε2 iterations is required to obtain an ε-optimal solution. We

summarize the discussion in the following theorem.

Theorem 8.18 (complexity of projected subgradient with Polyak’s step-
size). Suppose that Assumptions 8.7 and 8.12 hold. Let {xk}k≥0 be the sequence
generated by the projected subgradient method with Polyak’s stepsize rule (8.13).
Then for any nonnegative integer k satisfying

k ≥
L2
fd

2
X∗(x0)

ε2
− 1,

it holds that
fkbest − fopt ≤ ε.

Example 8.19. Consider the problem

min
x1,x2

{f(x1, x2) = |x1 + 2x2|+ |3x1 + 4x2|}.

Since in this chapter the underlying spaces are Euclidean, it follows that the under-
lying space in this example is R2 endowed with the dot product and the l2-norm.
The optimal solution of the problem is (x1, x2) = (0, 0), and the optimal value is
fopt = 0. Clearly, both Assumptions 8.7 and 8.12 hold. Since f(x) = ‖Ax‖1, where
A =

(
1 2

3 4

)
, it follows that for any x ∈ R2,

∂f(x) = AT ∂h(Ax),

where h(x) = ‖x‖1. By Example 3.41, for any w ∈ R2,

∂h(w) =
{
z ∈ R

2 : zi = sgn(wi), i ∈ I=(w), |zj | ≤ 1, j ∈ I0(w)
}
,

where
I0(w) = {i : wi = 0}, I=(w) = {i : wi 
= 0}.

Hence, if η ∈ ∂h(Ax), then η ∈ [−1, 1] × [−1, 1], and, in particular, ‖η‖2 ≤
√
2.

Therefore, since any g ∈ ∂f(x) can be written as g = ATη for some η ∈ ∂h(Ax),
we have

‖g‖2 = ‖ATη‖2 ≤ ‖AT ‖2,2‖η‖2 ≤ ‖AT ‖2,2 ·
√
2 = 7.7287.

We can thus choose Lf = 7.7287.
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208 Chapter 8. Primal and Dual Projected Subgradient Methods

The subgradient method update step takes the form⎛⎜⎝xk+1
1

xk+1
2

⎞⎟⎠ =

⎛⎜⎝xk1
xk2

⎞⎟⎠− |xk1 + 2xk2 |+ |3xk1 + 4xk2 |
‖v(xk1 , xk2)‖22

v(xk1 , x
k
2),

where we choose

v(x1, x2) =

⎛⎜⎝ sgn(x1 + 2x2) + 3sgn(3x1 + 4x2)

2sgn(x1 + 2x2) + 4sgn(3x1 + 4x2)

⎞⎟⎠ ∈ ∂f(x1, x2).

Note that in the terminology of this book sgn(0) = 1 (see Section 1.7.2), which
dictates the choice of the subgradient among the vectors in the subdifferential set
in cases where f is not differentiable at the given point. We can immediately see that
there are actually only four possible choices of directions v(x1, x2) depending on the
two possible values of sgn(x1 +2x2) and the two possible choices of sgn(3x1 +4x2).
The four possible directions are

u1 =

⎛⎜⎝−4

−6

⎞⎟⎠ , u2 =

⎛⎜⎝2

2

⎞⎟⎠ , u3 =

⎛⎜⎝−2

−2

⎞⎟⎠ , u4 =

⎛⎜⎝4

6

⎞⎟⎠ .

By Remark 8.14, the constant Lf can be chosen as maxi{‖ui‖2} = 7.2111, which is
a slightly better bound than 7.7287. The first 100 iterations of the method with a
starting point (1, 2)T are described in Figure 8.2. Note that the sequence of function
values is indeed not monotone (although convergence to fopt is quite apparent)
and that actually only two directions are being used by the method: (−2,−2)T ,
(4, 6)T .

8.2.3 The Convex Feasibility Problem

Let S1, S2, . . . , Sm ⊆ E be closed and convex sets. Assume that

S ≡
m⋂
i=1

Si 
= ∅. (8.20)

The convex feasibility problem is the problem of finding a point x in the intersection⋂m
i=1 Si. We can formulate the problem as the following minimization problem:

min
x

{
f(x) ≡ max

i=1,2,...,m
dSi(x)

}
. (8.21)

Since we assume that the intersection is nonempty, we have that fopt = 0 and that
the optimal set is S. Another property of f is that it is Lipschitz continuous with
constant 1.

Lemma 8.20. Let S1, S2, . . . , Sm be nonempty closed and convex sets. Then the
function f given in (8.21) is Lipschitz continuous with constant 1.
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Figure 8.2. First 100 iterations of the subgradient method applied to the
function f(x1, x2) = |x1+2x2|+ |3x1+4x2| with Polyak’s stepsize rule and starting
point (1, 2)T . The left image describes the function values at each iteration, and the
right image shows the contour lines along with the iterations.

Proof. Let i ∈ {1, 2, . . . ,m}, and let x,y ∈ E. Then

dSi(x) = ‖x− PSi(x)‖

≤ ‖x− PSi(y)‖
[
‖x− PSi(x)‖ = argminv∈Si

‖x− v‖
]

≤ ‖x− y‖+ ‖y − PSi(y)‖ [triangle inequality]

= ‖x− y‖+ dSi(y). [dSi(y) = ‖y − PSi(y)‖]

Thus,

dSi(x) − dSi(y) ≤ ‖x− y‖. (8.22)

Replacing the roles of x and y, we obtain that

dSi(y) − dSi(x) ≤ ‖x− y‖,

which, combined with (8.22), yields the inequality

|dSi(x) − dSi(y)| ≤ ‖x− y‖. (8.23)

Finally, for any x,y ∈ E,

|f(x)− f(y)| =
∣∣∣∣ max
i=1,2,...,m

dSi(x) − max
i=1,2,...,m

dSi(y)

∣∣∣∣ = |‖vx‖∞ − ‖vy‖∞| , (8.24)
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210 Chapter 8. Primal and Dual Projected Subgradient Methods

where vx = (dSi(x))
m
i=1 ∈ Rm and vy = (dSi(y))

m
i=1 ∈ Rm. Using the triangle

inequality for norms, we can continue (8.24) and obtain

|f(x)− f(y)| ≤ |‖vx‖∞ − ‖vy‖∞|
≤ ‖vx − vy‖∞
= max

i=1,2,...,m
|dSi(x)− dSi(y)|

(8.23)

≤ ‖x− y‖.

Let us write explicitly the projected subgradient method with Polyak’s stepsize
rule as applied to problem (8.21). The method starts with an arbitrary x0 ∈ E. If
the kth iteration satisfies xk ∈ S, then we can pick f ′(xk) = 0 and hence xk+1 = xk.
Otherwise, we take a step toward minus of the subgradient with Polyak’s stepsize.
By Theorem 3.50, to compute a subgradient of the objective function at the kth
iterate, we can use the following procedure:

(i) compute ik ∈ argmaxi=1,2,...,mdSi(x
k);

(ii) take any gk ∈ ∂dSik
(xk).

By Example 3.49, we can (and actually must) choose the subgradient in ∂dSik
(xk)

as gk =
xk−PSik

(xk)

dSik
(xk) , and in this case the update step becomes

xk+1 = xk −
dSik

(xk)− fopt

‖gk‖2 ·
xk − PSik

(xk)

dSik
(xk)

= xk − dSik
(xk)

xk − PSik
(xk)

dSik
(xk)

= PSik
(xk),

where we used in the above the facts that fopt = 0 and ‖gk‖ = 1. What we actually
obtained is the greedy projection algorithm, which at each iteration projects the
current iterate xk onto the farthest set among S1, S2, . . . , Sm. The algorithm is
summarized below.

Greedy Projection Algorithm

Input: m nonempty closed and convex sets S1, S2, . . . , Sm.
Initialization: pick x0 ∈ E.
General step: for any k = 0, 1, 2, . . . , execute the step

xk+1 = PSik
(xk),

where ik ∈ argmaxi=1,2,...,mdSi(x
k).
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8.2. The Projected Subgradient Method 211

We can invoke Theorems 8.13 and 8.17 to obtain the following convergence
result of the algorithm.

Theorem 8.21 (convergence of the greedy projection algorithm). Let
S1, S2, . . . , Sm ⊆ E be closed and convex sets such that S ≡

⋂m
i=1 Si 
= ∅. Let

{xk}k≥0 be the sequence generated by the greedy projection algorithm.

(a) For any k ≥ 0,

min
n=0,1,2,...,k

{
max

i=1,2,...,m
d(xn, Si)

}
≤ dS(x

0)√
k + 1

. (8.25)

(b) There exists x∗ ∈ S such that xk → x∗ as k → ∞.

Proof. To prove part (a), define f(x) ≡ maxi=1,2,...,m d(x, Si) and C = E. Then
the optimal set of the problem

min{f(x) : x ∈ C}

is X∗ = S. Assumption 8.7 is satisfied since f is proper closed and convex and
C = E is obviously nonempty closed and convex and contained in int(dom(f)) = E.
The optimal set X∗ = S is nonempty by the assumption in the premise of the
theorem. Assumption 8.12 is satisfied with Lf = 1 by Lemma 8.20 and Theorem
3.61. Therefore, all the assumptions of Theorem 8.13 are satisfied, and hence,
since the greedy projection algorithm is the same as the projected subgradient
method with Polyak’s stepsize rule, the result (8.25) holds, as it is exactly part (c)
of Theorem 8.13. Part (b) follows by invoking Theorem 8.17.

When m = 2, the algorithm amounts to the alternating projection method,
which is described below.

Alternating Projection Method

Input: two nonempty closed and convex sets S1, S2.
Initialization: pick x0 ∈ S2 arbitrarily.
General step: for any k = 0, 1, 2, . . ., execute the following step:

xk+1 = PS2(PS1(x
k)).

If S1 ∩ S2 
= ∅, by Theorem 8.21, the sequence generated by the alternating
projection method converges to a point in S1 ∩ S2.

Corollary 8.22 (convergence of alternating projection). Let S1, S2 be closed
and convex sets such that S ≡ S1 ∩ S2 
= ∅. Let {xk}k≥0 be the sequence generated
by the alternating projection method with initial point x0 ∈ S2. Then
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212 Chapter 8. Primal and Dual Projected Subgradient Methods

(a) for any k ≥ 0,

min
n=0,1,2,...,k

d(xn, S1) ≤
dS(x

0)√
k + 1

;

(b) there exists x∗ ∈ S such that xk → x∗ as k → ∞.

Example 8.23 (solution of linear feasibility problems). Consider the follow-
ing system of linear equalities and inequalities:

Ax = b,x ≥ 0, (8.26)

where A ∈ Rm×n has full row rank and b ∈ Rm. The system (8.26) is one of
the standard forms of feasible sets of linear programming problems. One way to
solve the problem of finding a solution to (8.26) is by employing the alternating
projection method. Define

S1 = {x ∈ R
n : Ax = b}, S2 = R

n
+.

The projections on S1 and S2 have analytic expressions (see Lemma 6.26):

PS1(x) = x−AT (AAT )−1(Ax − b), PS2(x) = [x]+.

The alternating projection method for finding a solution to (8.26) takes the following
form:

Algorithm 1

• Initialization: pick x0 ∈ Rn+.

• General step (k ≥ 0): xk+1 =
[
xk −AT (AAT )−1(Axk − b)

]
+
.

The general step of the above scheme involves the computation of the expression
(AAT )−1(Axk − b), which requires the computation of the matrix AAT , as well
as the solution of the linear system (AAT )z = Axk − b. In cases when these
computations are too demanding (e.g., when the dimension is large), we can employ
a different projection algorithm that avoids the necessity of solving a linear system.
Specifically, denoting the ith row of A by aTi and defining

Ti = {x ∈ R
n : aTi x = bi}, i = 1, 2, . . . ,m, Tm+1 = R

n
+,

we obtain that finding a solution to (8.26) is the same as finding a point in the

intersection
⋂m+1
i=1 Ti. Note that (see Lemma 6.26)

PTi(x) = x− aTi x− bi
‖ai‖22

ai, i = 1, 2, . . . ,m.

Hence,

dTi(x) = ‖x− PTi(x)‖ =
|aTi x− bi|

‖ai‖2
.

We can now invoke the greedy projection method that has the following form:
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8.2. The Projected Subgradient Method 213

Algorithm 2

• Initialization: pick x0 ∈ E.

• General step (k = 0, 1, . . .):

– compute ik ∈ argmaxi=1,2,...,m
|aT

i xk−bi|
‖ai‖2 .

– if
|aT

ik
xk−bik |
‖aik

‖2 > ‖xk − [xk]+‖2, then

xk+1 = xk − aT
ik

xk−bik
‖aik

‖22
aik .

else,
xk+1 = [xk]+.

Algorithm 2 is simpler than Algorithm 1 in the sense that it requires much less
operations per iteration. However, simplicity has its cost. Consider, for example,
the instance

A =

⎛⎜⎝ 0 6 −7 1

−1 2 10 −1

⎞⎟⎠ , b =

⎛⎜⎝ 0

10

⎞⎟⎠ .

Figure 8.3 shows the constraint violation of the two sequences generated by the two
algorithms initialized with the zeros vector in the first 20 iterations. Obviously, in
this case, Algorithm 1 (alternating projection) reached substantially better accura-
cies than Algorithm 2 (greedy projection).

0 2 4 6 8 10 12 14 16 18 20
10

10
15

10
10

10
5

10
0

k

f(
xk )

 

 

alternating
greedy

Figure 8.3. Constraints violation of alternating and greedy projec-

tion methods. Here f(x) = max
{
|aT

1 x−b1|
‖a1‖2 ,

|aT
2 x−b2|
‖a2‖2 , ‖x− [x]+‖2

}
, where aT1 =

(0, 6,−7, 1), aT2 = (−1, 2, 10,−1), and b = (0, 10)T .

8.2.4 Projected Subgradient with Dynamic Stepsizes

Polyak’s stepsize is optimal in the sense that it minimizes the upper bound given
in the fundamental inequality (8.12). However, a major disadvantage of this rule
is that usually the optimal value fopt is unknown, and in these (frequent) cases,
the stepsize is incomputable. In this section we will show how to find computable
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214 Chapter 8. Primal and Dual Projected Subgradient Methods

stepsize rules that still maintain the O(1/
√
k) rate of convergence result of the

projected subgradient method. Theorem 8.25 below describes a simple condition
on the stepsizes under which convergence of fkbest to fopt is guaranteed. The result
uses the following technical lemma.

Lemma 8.24. Suppose that Assumption 8.7 holds. Let {xk}k≥0 be the sequence
generated by the projected subgradient method with positive stepsizes {tk}k≥0. Then
for any x∗ ∈ X∗ and nonnegative integer k,

k∑
n=0

tn(f(x
n)− fopt) ≤

1

2
‖x0 − x∗‖2 + 1

2

k∑
n=0

t2n‖f ′(xn)‖2. (8.27)

Proof. By Lemma 8.11, for any n ≥ 0 and x∗ ∈ X∗,

1

2
‖xn+1 − x∗‖2 ≤ 1

2
‖xn − x∗‖2 − tn(f(x

n)− fopt) +
t2n
2
‖f ′(xn)‖2.

Summing the above inequality over n = 0, 1, . . . , k and arranging terms yields the
following inequality:

k∑
n=0

tn(f(x
n)− fopt) ≤

1

2
‖x0 − x∗‖2 − 1

2
‖xk+1 − x∗‖2 +

k∑
n=0

t2n
2
‖f ′(xn)‖2

≤ 1

2
‖x0 − x∗‖2 + 1

2

k∑
n=0

t2n‖f ′(xn)‖2.

Theorem 8.25 (stepsize conditions warranting convergence of projected
subgradient). Suppose that Assumptions 8.7 and 8.12 hold. Let {xk}k≥0 be the se-
quence generated by the projected subgradient method with positive stepsizes {tk}k≥0.
If ∑k

n=0 t
2
n∑k

n=0 tn
→ 0 as k → ∞, (8.28)

then
fkbest − fopt → 0 as k → ∞, (8.29)

where {fkbest}k≥0 is the sequence of best achieved values defined in (8.11).

Proof. Let Lf be a constant for which ‖g‖ ≤ Lf for any g ∈ ∂f(x),x ∈ C whose
existence is warranted by Assumption 8.12. Employing Lemma 8.24 and using the
inequalities ‖f ′(xn)‖ ≤ Lf and f(xn) ≥ fkbest for n ≤ k, we obtain(

k∑
n=0

tn

)
(fkbest − fopt) ≤

1

2
‖x0 − x∗‖2 +

L2
f

2

k∑
n=0

t2n.

Therefore,

fkbest − fopt ≤
1

2

‖x0 − x∗‖2∑k
n=0 tn

+
L2
f

2

∑k
n=0 t

2
n∑k

n=0 tn
.
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8.2. The Projected Subgradient Method 215

The result (8.29) now follows by (8.28), and the fact that (8.28) implies the limit∑k
n=0 tn → ∞ as k → ∞.

By Theorem 8.25, we can pick, for example, the stepsizes as tk = 1√
k+1

, and

convergence of function values to fopt will be guaranteed since
∑k
n=0

1√
n+1

is of the

order of
√
k and

∑k
n=0

1
n+1 is of the order of log(k). We will analyze the conver-

gence rate of the projected subgradient method when the stepsizes are chosen as
tk = 1

‖f ′(xk)‖
√
k+1

in Theorem 8.28 below. Note that in addition to proving the limit

fkbest → fopt, we will further show that the function values of a certain sequence
of averages also converges to the optimal value. Such a result is called an ergodic
convergence result.

To prove the result, we will be need to upper and lower bound sums of se-
quences of real numbers. For that, we will use the following technical lemma from
calculus.

Lemma 8.26. Let f : [a − 1, b + 1] → R be a continuous nonincreasing function
over [a− 1, b+ 1], where a and b are integer numbers satisfying a ≤ b. Then∫ b+1

a

f(t)dt ≤ f(a) + f(a+ 1) + · · ·+ f(b) ≤
∫ b

a−1
f(t)dt.

Using Lemma 8.26, we can prove the following lemma that will be useful in
proving Theorem 8.28, as well as additional results in what follows.

Lemma 8.27. Let D ∈ R. Then

(a) for any k ≥ 1,

D +
∑k

n=0
1

n+1∑k
n=0

1√
n+1

≤ D + 1 + log(k + 1)√
k + 1

; (8.30)

(b) for any k ≥ 2,

D +
∑k
n=�k/2�

1
n+1∑k

n=�k/2�
1√
n+1

≤ 4(D + log(3))√
k + 2

. (8.31)

Proof. (a) Using Lemma 8.26, we obtain the following inequalities:

k∑
n=0

1

n+ 1
= 1 +

k∑
n=1

1

n+ 1
≤ 1 +

∫ k

0

1

x+ 1
dx = 1 + log(k + 1), (8.32)

k∑
n=0

1√
n+ 1

≥
∫ k+1

0

1√
x+ 1

dx = 2
√
k + 2− 2 ≥

√
k + 1, (8.33)

where the last inequality holds for all k ≥ 1. The result (8.30) now follows imme-
diately from (8.32) and (8.33).
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216 Chapter 8. Primal and Dual Projected Subgradient Methods

(b) Using Lemma 8.26, we obtain the following inequalities for any k ≥ 2:

k∑
n=�k/2�

1

n+ 1
≤
∫ k

�k/2�−1

dt

t+ 1
= log(k + 1)− log(�k/2�)

= log

(
k + 1

�0.5k�

)
≤ log

(
k + 1

0.5k

)
= log

(
2 +

2

k

)
≤ log(3) (8.34)

and

k∑
n=�k/2�

1√
n+ 1

≥
∫ k+1

�k/2�

dt√
t+ 1

= 2
√
k + 2− 2

√
�k/2�+ 1

≥ 2
√
k + 2− 2

√
k/2 + 2 =

4(k + 2)− 4(0.5k + 2)

2
√
k + 2 + 2

√
0.5k + 2

=
k√

k + 2 +
√
0.5k + 2

≥ k

2
√
k + 2

≥ 1

4

√
k + 2, (8.35)

where the last inequality holds since k ≥ 2. The result (8.31) now follows by
combining (8.34) and (8.35).

We are now ready to prove the convergence result.

Theorem 8.28 (O(log(k)/
√
k) rate of convergence of projected subgradi-

ent). Suppose that Assumptions 8.7 and 8.12 hold. Let {xk}k≥0 be the sequence
generated by the projected subgradient method with stepsizes tk = 1

‖f ′(xk)‖
√
k+1

if

f ′(xk) 
= 0 and tk = 1
Lf

otherwise. Then

(a) for any k ≥ 1,

fkbest − fopt ≤
Lf
2

‖x0 − x∗‖2 + 1 + log(k + 1)√
k + 1

,

where {fkbest}k≥0 is the sequence of best achieved values defined in (8.11);

(b) for any k ≥ 1,

f(x(k))− fopt ≤
Lf
2

‖x0 − x∗‖2 + 1 + log(k + 1)√
k + 1

,

where

x(k) =
1∑k

n=0 tn

k∑
n=0

tnx
n.

Proof. Using (8.27) along with the inequality f(xn) ≥ fkbest for any n = 0, 1, 2, . . . , k,
we obtain

fkbest − fopt ≤
1

2

‖x0 − x∗‖2 +
∑k

n=0 t
2
n‖f ′(xn)‖2∑k

n=0 tn
. (8.36)
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8.2. The Projected Subgradient Method 217

Alternatively, by Jensen’s inequality

f(x(k)) ≤ 1∑k
n=0 tn

k∑
n=0

tnf(x
n),

which, along with (8.27), yields

f(x(k))− fopt ≤
1

2

‖x0 − x∗‖2 +
∑k

n=0 t
2
n‖f ′(xn)‖2∑k

n=0 tn
. (8.37)

Therefore, combining (8.36) and (8.37), we have

max{fkbest − fopt, f(x
(k))− fopt} ≤ 1

2

‖x0 − x∗‖2 +
∑k

n=0 t
2
n‖f ′(xn)‖2∑k

n=0 tn
.

By the definition of tn, t
2
n‖f ′(xn)‖2 ≤ 1

n+1 (satisfied as equality when f ′(xn) 
= 0
and as a strict inequality when f ′(xn) = 0); in addition, since ‖f ′(xn)‖ ≤ Lf , we
have tn ≥ 1

Lf

√
n+1

. Therefore,

max{fkbest − fopt, f(x
(k))− fopt} ≤ Lf

2

‖x0 − x∗‖2 +
∑k
n=0

1
n+1∑k

n=0
1√
n+1

. (8.38)

Invoking Lemma 8.27(a) with D = ‖x0 − x∗‖2 implies the inequality

max{fkbest − fopt, f(x
(k))− fopt} ≤ Lf

2

‖x0 − x∗‖2 + 1 + log(k + 1)√
k + 1

,

which is equivalent to the validity of the two claims (a) and (b).

Remark 8.29. The sequence of averages x(k) as defined in Theorem 8.28 can be
computed in an adaptive way by noting that the following simple recursion relation
holds:

x(k+1) =
Tk
Tk+1

x(k) +
tk+1

Tk+1
xk+1,

where Tk ≡
∑k

n=0 tn can be computed by the obvious recursion relation Tk+1 =
Tk + tk+1.

The O(log(k)/
√
k) rate of convergence proven in Theorem 8.28 is worse than

the O(1/
√
k) rate established in Theorem 8.13 for the version of the projected

subgradient method with Polyak’s stepsize. It is possible to prove an O(1/
√
k) rate

of convergence if we assume in addition that the feasible set C is compact. Note
that by Theorem 3.16, the compactness of C implies the validity of Assumption
8.12, but we will nonetheless explicitly state it in the following result.

Theorem 8.30 (O(1/
√
k) rate of convergence of projected subgradient).

Suppose that Assumptions 8.7 and 8.12 hold and assume that C is compact. Let Θ
be an upper bound on the half-squared diameter of C:

Θ ≥ max
x,y∈C

1

2
‖x− y‖2.
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218 Chapter 8. Primal and Dual Projected Subgradient Methods

Let {xk}k≥0 be the sequence generated by the projected subgradient method with
stepsizes chosen as either

tk =

√
2Θ

Lf
√
k + 1

(8.39)

or

tk =

⎧⎪⎨⎪⎩
√
2Θ

‖f ′(xk)‖
√
k+1

, f ′(xk) 
= 0,
√
2Θ

Lf

√
k+1

, f ′(xk) = 0.
(8.40)

Then for all k ≥ 2,

fkbest − fopt ≤
δLf

√
2Θ√

k + 2
,

where δ = 2(1 + log(3)) and fkbest is the sequence of best achieved values defined in
(8.11).

Proof. By Lemma 8.11, for any n ≥ 0,

1

2
‖xn+1 − x∗‖2 ≤ 1

2
‖xn − x∗‖2 − tn(f(x

n)− fopt) +
t2n
2
‖f ′(xn)‖2.

Summing the above inequality over n = �k/2�, �k/2�+ 1, . . . , k, we obtain

k∑
n=�k/2�

tn(f(x
n)− fopt) ≤

1

2
‖x�k/2� − x∗‖2 − 1

2
‖xk+1 − x∗‖2 +

k∑
n=�k/2�

t2n
2
‖f ′(xn)‖2

≤ Θ+
k∑

n=�k/2�

t2n
2
‖f ′(xn)‖2

≤ Θ+Θ

k∑
n=�k/2�

1

n+ 1
, (8.41)

where the last inequality is due to the fact that in either of the definitions of the
stepsizes (8.39), (8.40), t2n‖f ′(xn)‖2 ≤ 2Θ

n+1 .

Since tn ≥
√
2Θ

Lf

√
n+1

and f(xn) ≥ fkbest for all n ≤ k, it follows that

k∑
n=�k/2�

tn(f(x
n)− fopt) ≥

⎛⎝ k∑
n=�k/2�

√
2Θ

Lf
√
n+ 1

⎞⎠ (fkbest − fopt). (8.42)

Therefore, combining (8.41) and (8.42) yields

fkbest − fopt ≤
Lf

√
Θ√
2

1 +
∑k
n=�k/2�

1
n+1∑k

n=�k/2�
1√
n+1

, (8.43)

which, combined with Lemma 8.27(b), yields the desired result.
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8.2. The Projected Subgradient Method 219

8.2.5 The Strongly Convex Case
43

We will now show that if f is in addition strongly convex, then the O(1/
√
k) rate

of convergence result can be improved to a rate of O(1/k). The stepsizes used in
order to achieve this improved rate diminish at an order of 1/k. We will also use
the growth property of strongly convex functions described in Theorem 5.25(b) in
order to show a result on the rate of convergence of the sequence {xk}k≥0 to an
optimal solution.

Theorem 8.31 (O(1/k) rate of convergence of projected subgradient for
strongly convex functions). Suppose that Assumptions 8.7 and 8.12 hold. As-
sume in addition that f is σ-strongly convex for some σ > 0, and let x∗ be its
unique minimizer. Let {xk}k≥0 be the sequence generated by the projected subgra-
dient method with stepsize tk = 2

σ(k+1) .

(a) Let {fkbest}k≥0 be the sequence of best achieved values defined in (8.11). Then
for any k ≥ 0,

fkbest − fopt ≤
2L2

f

σ(k + 1)
. (8.44)

In addition,

‖xik − x∗‖ ≤ 2Lf

σ
√
k + 1

, (8.45)

where ik ∈ argmini=0,1,...,kf(x
i).

(b) Define the sequence of averages:

x(k) =

k∑
n=0

αknx
n,

where αkn ≡ 2n
k(k+1) . Then for all k ≥ 0,

f(x(k))− fopt ≤
2L2

f

σ(k + 1)
. (8.46)

In addition,

‖x(k) − x∗‖ ≤ 2Lf

σ
√
k + 1

. (8.47)

Proof. (a) Repeating the arguments in the proof of Lemma 8.11, we can write for
any n ≥ 0

‖xn+1 − x∗‖2 = ‖PC(xn − tnf
′(xn))− PC(x

∗)‖2

≤ ‖xn − tnf
′(xn)− x∗‖2

= ‖xn − x∗‖2 − 2tn〈f ′(xn),xn − x∗〉+ t2n‖f ′(xn)‖2. (8.48)

43The analysis of the stochastic and deterministic projected subgradient method in the strongly
convex case is based on the work of Lacoste-Julien, Schmidt, and Bach [77].
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220 Chapter 8. Primal and Dual Projected Subgradient Methods

Since f is σ-strongly convex, it follows by Theorem 5.24 that

f(x∗) ≥ f(xn) + 〈f ′(xn),x∗ − xn〉+ σ

2
‖xn − x∗‖2.

That is,

〈f ′(xn),xn − x∗〉 ≥ f(xn)− fopt +
σ

2
‖xn − x∗‖2.

Plugging the above into (8.48), we obtain that

‖xn+1 − x∗‖2 ≤ (1− σtn)‖xn − x∗‖2 − 2tn(f(x
n)− fopt) + t2n‖f ′(xn)‖2.

Rearranging terms, dividing by 2tn, and using the bound ‖f ′(xn)‖ ≤ Lf leads to
the following inequality:

f(xn)− fopt ≤
1

2
(t−1n − σ)‖xn − x∗‖2 − 1

2
t−1n ‖xn+1 − x∗‖2 + tn

2
L2
f .

Plugging tn = 2
σ(n+1) into the latter inequality, we obtain

f(xn)− fopt ≤
σ(n− 1)

4
‖xn − x∗‖2 − σ(n+ 1)

4
‖xn+1 − x∗‖2 + 1

σ(n+ 1)
L2
f .

Multiplying the above by n yields the following inequality:

n(f(xn)− fopt) ≤
σn(n− 1)

4
‖xn − x∗‖2 − σ(n+ 1)n

4
‖xn+1 − x∗‖2 + n

σ(n+ 1)
L2
f .

Summing over n = 0, 1, . . . , k, we conclude that

k∑
n=0

n(f(xn)− fopt) ≤ 0− σ

4
k(k + 1)‖xk+1 − x∗‖2 +

L2
f

σ

k∑
n=0

n

n+ 1
≤
L2
fk

σ
. (8.49)

Therefore, using the inequality f(xn) ≥ fkbest for all n = 0, 1, . . . , k, it follows that(
k∑

n=0

n

)
(fkbest − fopt) ≤

L2
fk

σ
,

which by the known identity
∑k

n=0 n = k(k+1)
2 shows that

fkbest − fopt ≤
2L2

f

σ(k + 1)
, (8.50)

meaning that (8.44) holds. To prove (8.45), note that fkbest = f(xik), and hence by
Theorem 5.25(b) employed on the σ-strongly convex function f + δC and (8.50),

σ

2
‖xik − x∗‖2 ≤ fkbest − fopt ≤

2L2
f

σ(k + 1)
,

which is the same as

‖xik − x∗‖ ≤ 2Lf

σ
√
k + 1

.
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8.3. The Stochastic Projected Subgradient Method 221

(b) To establish the ergodic convergence, we begin by dividing (8.49) by k(k+1)
2

to obtain
k∑

n=0

αkn(f(x
n)− fopt) ≤

2L2
f

σ(k + 1)
.

By Jensen’s inequality (utilizing the fact that (αkn)
k
n=0 ∈ Δk+1),

f(x(k))− fopt = f

(
k∑

n=0

αknx
n

)
− fopt ≤

k∑
n=0

αkn(f(x
n)− fopt) ≤

2L2
f

σ(k + 1)
,

meaning that (8.46) holds. The result (8.47) now follows by the same arguments
used to prove (8.45) in part (a).

Remark 8.32. The sequence of averages x(k) as defined in Theorem 8.31 can be
computed in an adaptive way by noting that the following simple recursion relation
holds:

x(k+1) =
k

k + 2
x(k) +

2

k + 2
xk+1.

The O(1/k) rate of convergence of the sequence of function values naturally
leads to the observation that to obtain an ε-optimal solution, an order of 1/ε it-
erations is required. The proof is trivial and follows the argument of the proof of
Theorem 8.18.

Theorem 8.33 (complexity of projected subgradient for strongly convex
functions). Under the setting and assumptions of Theorem 8.31, for any nonneg-
ative integer k satisfying

k ≥
2L2

f

σε
− 1,

it holds that

fkbest − fopt ≤ ε

and

f(x(k))− fopt ≤ ε.

8.3 The Stochastic Projected Subgradient Method

8.3.1 Setting and Method

In this section we still study the model (8.10) under Assumption 8.7. The main
difference will be that at each iteration we do not necessarily utilize a subgradient at
the current iterate xk as the update direction vector, but rather a random estimator
gk of a subgradient of f at xk (a precise characterization will be given in Assumption
8.34). The method is therefore given as follows.
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222 Chapter 8. Primal and Dual Projected Subgradient Methods

The Stochastic Projected Subgradient Method

Initialization: pick x0 ∈ C arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(A) pick a stepsize tk > 0 and a random vector gk ∈ E;

(B) set xk+1 = PC(x
k − tkg

k).

Obviously, since the vectors gk are random vectors, so are the iterate vectors
xk. The exact assumptions on the random vectors gk are given below.

Assumption 8.34.

(A) (unbiasedness) For any k ≥ 0, E(gk|xk) ∈ ∂f(xk).

(B) (boundedness) There exists a constant L̃f > 0 such that for any k ≥ 0,

E(‖gk‖2|xk) ≤ L̃2
f .

Part (A) of the assumption says that gk is an unbiased estimator of a subgra-
dient at xk. This assumption can also be written as

f(z) ≥ f(xk) + 〈E(gk|xk), z− xk〉 for all z ∈ dom(f).

The constant L̃f from part (B) of Assumption 8.34 is not necessarily a Lipschitz
constant of f as in the deterministic case.

8.3.2 Analysis

The analysis of the stochastic projected subgradient is almost identical to the anal-
ysis of the deterministic method. We gather the main results in the following
theorem.

Theorem 8.35 (convergence of stochastic projected gradient). Suppose
that Assumptions 8.7 and 8.34 hold. Let {xk}k≥0 be the sequence generated by
the stochastic projected subgradient method with positive stepsizes {tk}k≥0, and let
{fkbest}k≥0 be the sequence of best achieved values defined in (8.11).

(a) If
∑k

n=0 t
2
n∑

k
n=0 tn

→ 0 as k → ∞, then E(fkbest) → fopt as k → ∞.

(b) Assume that C is compact. Let L̃f be the positive constant defined in As-
sumption 8.34, and let Θ be an upper bound on the half-squared diameter of
C:

Θ ≥ max
x,y∈C

1

2
‖x− y‖2. (8.51)

If tk =
√
2Θ

L̃f

√
k+1

, then for all k ≥ 2,

E(fkbest)− fopt ≤
δL̃f

√
2Θ√

k + 2
,

where δ = 2(1 + log(3)).
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8.3. The Stochastic Projected Subgradient Method 223

Proof. We have for any n ≥ 0,

E
(
‖xn+1 − x∗‖2 |xn

)
= E

(
‖PC(xn − tng

n)− PC(x
∗)‖2 |xn

)
(∗)
≤ E

(
‖xn − tng

n − x∗‖2 |xn
)

= ‖xn − x∗‖2 − 2tnE (〈gn,xn − x∗〉 |xn ) + t2nE
(
‖gn‖2 |xn

)
= ‖xn − x∗‖2 − 2tn〈E(gn|xn),xn − x∗〉+ t2nE

(
‖gn‖2 |xn

)
(∗∗)
≤ ‖xn − x∗‖2 − 2tn〈E(gn|xn),xn − x∗〉+ t2nL̃

2
f

(∗∗∗)
≤ ‖xn − x∗‖2 − 2tn(f(x

n)− fopt) + t2nL̃
2
f ,

where (∗) follows by the nonexpansiveness property of the orthogonal projection
operator (Theorem 6.42), and (∗∗) and (∗∗∗) follow by Assumption 8.34.

Taking expectation w.r.t. xn, we obtain

E
(
‖xn+1 − x∗‖2

)
≤ E

(
‖xn − x∗‖2

)
− 2tn(E(f(x

n))− fopt) + t2nL̃
2
f .

Summing over n = m,m+ 1, . . . , k (where m is an integer satisfying m ≤ k),

E
(
‖xk+1 − x∗‖2

)
≤ E

(
‖xm − x∗‖2

)
− 2

k∑
n=m

tn(E(f(x
n))− fopt) + L̃2

f

k∑
n=m

t2n.

Therefore,

k∑
n=m

tn(E(f(x
n))− fopt) ≤

1

2

[
E
(
‖xm − x∗‖2

)
+ L̃2

f

k∑
n=m

t2n

]
,

which implies(
k∑

n=m

tn

)(
min

n=m,m+1,...,k
E(f(xn))− fopt

)
≤ 1

2

[
E
(
‖xm − x∗‖2

)
+ L̃2

f

k∑
n=m

t2n

]
.

Using the inequality44

E(fkbest) ≤ E

(
min

n=m,m+1,...,k
f(xn)

)
≤ min
n=m,m+1,...,k

E(f(xn)),

we can conclude that

E(fkbest)− fopt ≤
E(‖xm − x∗‖2) + L̃2

f

∑k
n=m t

2
n

2
∑k
n=m tn

. (8.52)

Plugging m = 0 in (8.52), we obtain

E(fkbest)− fopt ≤
‖x0 − x∗‖2 + L̃2

f

∑k
n=0 t

2
n

2
∑k
n=0 tn

.

44The fact that for any p random variables E(min{X1, X2, . . . ,Xp}) ≤ mini=1,2,...,p E(Xi) fol-
lows by the following argument: for any i = 1, 2, . . . , p, the inequality min{X1, X2, . . . ,Xp} ≤ Xi

holds. Taking expectation leads to the inequality E(min{X1,X2, . . . , Xp}) ≤ E(Xi) for any i, from
which the desired inequality E(min{X1,X2, . . . , Xp}) ≤ mini=1,2,...,p E(Xi) follows.
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224 Chapter 8. Primal and Dual Projected Subgradient Methods

Therefore, if
∑k

n=0 t
2
n∑k

n=0 tn
→ 0, then E(fkbest) → fopt as k → ∞, proving claim (a). To

show the validity of claim (b), use (8.52) with m = �k/2� and the bound (8.51) to
obtain

E(fkbest)− fopt ≤
Θ+

L̃2
f

2

∑k
n=�k/2� t

2
n∑k

n=�k/2� tn
.

Taking tn =
√
2Θ

L̃f

√
n+1

, we get

E(fkbest)− fopt ≤
L̃f

√
2Θ

2

1 +
∑k
n=�k/2�

1
n+1∑k

n=�k/2�
1√
n+1

,

which, combined with Lemma 8.27(b), yields the desired result.

Example 8.36 (minimization of sum of convex functions). Consider the
optimization model

(P) min

{
f(x) ≡

m∑
i=1

fi(x) : x ∈ C

}
,

where f1, f2, . . . , fm : E → (−∞,∞] are proper closed and convex functions. Sup-
pose that Assumption 8.7 holds and that C is compact, which in particular implies
the validity of Assumption 8.12 with some constant Lf . By Theorem 3.61 Lf is a
Lipschitz constant of f over C. Let Θ be some upper bound on the half-squared
diameter of C:

1

2
max
x,y∈C

‖x− y‖2 ≤ Θ.

In addition, we will assume that for any i = 1, 2, . . . ,m, there exists a constant Lfi
for which

‖g‖ ≤ Lfi for all g ∈ ∂fi(x),x ∈ C.

By Theorem 3.61, Lfi is a Lipschitz constant of fi over C. We can consider two
options for solving the main problem (P). The first is to employ the projected
subgradient method (we assume that f ′(xk) 
= 0):

Algorithm 1

• Initialization: pick x0 ∈ C.

• General step (k ≥ 0): choose f ′i(x
k) ∈ ∂fi(x

k), i = 1, 2, . . . ,m, and
compute

xk+1 = PC

(
xk −

√
2Θ

‖
∑m
i=1 f

′
i(x

k)‖
√
k + 1

(
m∑
i=1

f ′i(x
k)

))
.

By Theorem 8.30, the following efficiency estimate holds for any k ≥ 2:

fkbest − fopt ≤
δLf

√
2Θ√

k + 2
, (8.53)
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8.3. The Stochastic Projected Subgradient Method 225

where δ = 2(1+log(3)). A direct consequence is that in order to obtain an ε-optimal
solution,

N1 = max

{
2δ2L2

fΘ

ε2
− 2, 2

}
iterations are sufficient. Since the computation of the subgradient of f at xk by
the formula

∑m
i=1 f

′
i(x

k) might be too expensive in cases where m is large, we can
alternatively employ the stochastic projected subgradient method where at iteration
k, we define the unbiased estimate of f ′(xk) as

gk = mf ′ik(x
k),

where ik is randomly picked from {1, 2, . . . ,m} via a uniform distribution. Obvi-
ously,

E(gk|xk) =
m∑
i=1

1

m
mf ′i(x

k) =

m∑
i=1

f ′i(x
k) ∈ ∂f(xk),

where the inclusion in ∂f(xk) follows by the sum rule of subdifferential calculus
(Corollary 3.38). Also,

E(‖gk‖2|xk) = 1

m

m∑
i=1

m2‖f ′i(xk)‖2 ≤ m

m∑
i=1

L2
fi ≡ L̃2

f .

The stochastic projected subgradient method employed on problem (P) therefore
takes the following form:

Algorithm 2

• Initialization: pick x0 ∈ C.

• General step (k ≥ 0):

– pick ik ∈ {1, 2, . . . ,m} randomly via a uniform distribution and
f ′ik(x

k) ∈ ∂fik(x
k);

– compute

xk+1 = PC

(
xk −

√
2Θm

L̃f
√
k + 1

f ′ik(x
k)

)
,

where L̃f =
√
m
√∑m

i=1 L
2
fi
.

Invoking Theorem 8.35, we obtain that

E(fkbest)− fopt ≤
δ
√
m
√∑m

i=1 L
2
fi

√
2Θ

√
k + 2

. (8.54)

In particular,

N2 = max

{
2δ2mΘ

∑m
i=1 L

2
fi

ε2
− 2, 2

}
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226 Chapter 8. Primal and Dual Projected Subgradient Methods

iterations are sufficient in order to ensure that an ε-optimal solution in expectation is
reached. The natural question that arises is, is it possible to compare between the two
algorithms? The answer is actually not clear. We can compare the two quantities
N2 and N1, but there are two major flaws in such a comparison. First, in a sense
this is like comparing apples and oranges since N1 considers a sequence of function
values, while N2 refers to a sequence of expected function values. In addition, recall
that N2 and N1 only provide upper bounds on the amount of iterations required
to obtain an ε-optimal solution (deterministically or in expectation). Comparison
of upper bounds might be influenced dramatically by the tightness of the upper
bounds. Disregarding these drawbacks, estimating the ratio between N2 and N1,
while neglecting the constant terms, which do not depend on ε, we get

N2

N1
≈

2δ2mΘ
∑m

i=1 L
2
fi

ε2

2δ2L2
fΘ

ε2

=
m
∑m

i=1 L
2
fi

L2
f

≡ β.

The value of β obviously depends on the specific problem at hand. Let us, for
example, consider the instance in which fi(x) = |aTi x + bi|, i = 1, 2, . . . ,m, where
ai ∈ R

n, bi ∈ R, and C = B‖·‖2 [0, 1]. In this case,

f(x) = ‖Ax+ b‖1,

where A is the m× n matrix whose rows are aTi and b = (bi)
m
i=1. Since

∂fi(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ai, aTi x+ bi > 0,

−ai, aTi x+ bi < 0,

{ξai : ξ ∈ [−1, 1]}, aTi x+ bi = 0,

it follows that we can choose Lfi = ‖ai‖2. To estimate Lf , note that by Example
3.44, any g ∈ ∂f(x) has the form g = ATη for some η ∈ [−1, 1]m, which in
particular implies that ‖η‖2 ≤

√
m. Thus,

‖g‖2 = ‖ATη‖2 ≤ ‖AT ‖2,2‖η‖2 ≤
√
m‖AT ‖2,2,

where ‖ · ‖2,2 is the spectral norm. We can therefore choose Lf =
√
m‖AT ‖2,2.

Thus,

β =
m
∑m
i=1 ‖ai‖22

m‖AT ‖22,2
=

‖AT ‖2F
‖AT ‖22,2

=

∑n
i=1 λi(AAT )

maxi=1,2,...,n λi(AAT )
,

where λ1(AAT ) ≥ λ2(AAT ) ≥ · · · ≥ λn(AAT ) are the eigenvalues ofAAT ordered
nonincreasingly. Using the fact that for any nonnegative numbers α1, α2, . . . , αm
the inequalities

max
i=1,2,...,m

αi ≤
m∑
i=1

αi ≤ m max
i=1,2,...,m

αi

hold, we obtain that 1 ≤ β ≤ m. The extreme case β = m is actually quite logical in
the sense that the number of subgradient computations per iteration in Algorithm 1
is m times larger than what is required in Algorithm 2, and it is thus not surprising
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8.3. The Stochastic Projected Subgradient Method 227

that the amount of iterations of Algorithm 2 might be m times larger than what is
required by Algorithm 1 to obtain the same level of accuracy. What is much less
intuitive is the case when β is close 1. In these instances, the two algorithms require
(modulo the faults of this comparison) the same order of iterations to obtain the
same order of accuracy. For example, when A “close” to be of rank one, then β will
be close to 1. In these cases, the two algorithms should perform similarly, although
Algorithm 2 is much less computationally demanding. We can explain this result
by the fact that in this instance the vectors ai are “almost” proportional to each
other, and thus all the subgradient directions f ′i(x

k) are similar.

8.3.3 Stochastic Projected Subgradient—The Strongly Convex
Case

The analysis of the stochastic projected subgradient method is almost identical to
the one presented for the deterministic case in Theorem 8.31, but for the sake of
completeness we present the result and its complete proof.

Theorem 8.37 (convergence of stochastic projected subgradient for
strongly convex functions). Suppose that Assumptions 8.7 and 8.34 hold. Let
L̃f be the positive constant defined in Assumption 8.34. Assume in addition that f
is σ-strongly convex for some σ > 0. Let {xk}k≥0 be the sequence generated by the
stochastic projected subgradient method with stepsizes tk = 2

σ(k+1) .

(a) Let {fkbest}k≥0 be the sequence of best achieved values defined in (8.11). Then
for any k ≥ 0,

E(fkbest)− fopt ≤
2L̃2

f

σ(k + 1)
.

(b) Define the sequence of averages

x(k) =

k∑
n=0

αknx
n,

where αkn ≡ 2n
k(k+1) . Then

E(f(x(k)))− fopt ≤
2L̃2

f

σ(k + 1)
.

Proof. (a) For any x∗ ∈ X∗ and n ≥ 0,

E
(
‖xn+1 − x∗‖2|xn

)
= E

(
‖PC(xn − tng

n)− PC(x
∗)‖2|xn

)
≤ E

(
‖xn − tng

n − x∗‖2|xn
)

= ‖xn − x∗‖2 − 2tn〈E(gn|xn),xn − x∗〉
+t2nE(‖gn‖2|xn). (8.55)

Since f is σ-strongly convex and E(gn|xn) ∈ ∂f(xn), it follows by Theorem 5.24(ii)
that

f(x∗) ≥ f(xn) + 〈E(gn|xn),x∗ − xn〉+ σ

2
‖xn − x∗‖2.
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228 Chapter 8. Primal and Dual Projected Subgradient Methods

That is,

〈E(gn|xn),xn − x∗〉 ≥ f(xn)− fopt +
σ

2
‖xn − x∗‖2.

Plugging the above into (8.55), we obtain that

E
(
‖xn+1 − x∗‖2|xn

)
≤ (1− σtn)‖xn − x∗‖2 − 2tn(f(x

n)− fopt) + t2nE(‖gn‖2|xn).

Rearranging terms, dividing by 2tn, and using the bound E(‖gn‖2|xn) ≤ L̃2
f leads

to the following inequality:

f(xn)− fopt ≤
1

2
(t−1n − σ)‖xn − x∗‖2 − 1

2
t−1n E(‖xn+1 − x∗‖2|xn) + tn

2
L̃2
f .

Plugging tn = 2
σ(n+1) into the last inequality, we obtain

f(xn)− fopt ≤
σ(n− 1)

4
‖xn − x∗‖2 − σ(n+ 1)

4
E(‖xn+1 − x∗‖2|xn) + 1

σ(n+ 1)
L̃2
f .

Multiplying the above by n and taking expectation w.r.t. xn yields the following
inequality:

n(E(f(xn))− fopt) ≤
σn(n− 1)

4
E(‖xn − x∗‖2)− σ(n+ 1)n

4
E(‖xn+1 − x∗‖2)

+
n

σ(n+ 1)
L̃2
f .

Summing over n = 0, 1, . . . , k,

k∑
n=0

n(E(f(xn))− fopt) ≤ 0− σ

4
k(k + 1)E(‖xk+1 − x∗‖2) +

L̃2
f

σ

k∑
n=0

n

n+ 1
≤
L̃2
fk

σ
.

(8.56)
Therefore, using the inequality E(f(xn)) ≥ E(fkbest) for all n = 0, 1, . . . , k, it follows
that (

k∑
n=0

n

)
(E(fkbest)− fopt) ≤

L̃2
fk

σ
,

which, by the identity
∑k
n=0 n = k(k+1)

2 , implies that

E(fkbest)− fopt ≤
2L̃2

f

σ(k + 1)
.

(b) Divide (8.56) by k(k+1)
2 to obtain

k∑
n=0

αkn(E(f(x
n))− fopt) ≤

2L2
f

σ(k + 1)
.

By Jensen’s inequality (utilizing the fact that (αkn)
k
n=0 ∈ Δk+1), we finally obtain

E(f(x(k)))− fopt = E

(
f

(
k∑

n=0

αknx
n

))
− fopt ≤

k∑
n=0

αkn(E(f(x
n))− fopt)

≤
2L̃2

f

σ(k + 1)
.
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8.4. The Incremental Projected Subgradient Method 229

8.4 The Incremental Projected Subgradient Method
Consider the main model (8.10), where f has the form f(x) =

∑m
i=1 fi(x). That is,

we consider the problem

min

{
f(x) =

m∑
i=1

fi(x) : x ∈ C

}
. (8.57)

In addition to Assumption 8.7, we make the following assumption.

Assumption 8.38.

(a) fi is proper closed and convex for any i = 1, 2, . . . ,m.

(b) There exists L > 0 for which ‖g‖ ≤ L for any g ∈ ∂fi(x), i = 1, 2, . . . ,m,
x ∈ C.

In Example 8.36 the same model was also considered, and a projected sub-
gradient method that takes a step toward a direction of the form −f ′ik(x

k) was
analyzed. The index ik was chosen in Example 8.36 randomly by a uniform distri-
bution over the indices {1, 2, . . . ,m}, and the natural question that arises is whether
we can obtain similar convergence results when ik is chosen in a deterministic man-
ner. We will consider the variant in which the indices are chosen in a deterministic
cyclic order. The resulting method is called the incremental projected subgradient
method. We will show that although the analysis is much more involved, it is still
possible to obtain similar rates of convergence (albeit with worse constants).

An iteration of the incremental projected subgradient method is divided into
subiterations. Let xk be the kth iterate vector. Then we define xk,0 = xk and pro-
duce m subiterations xk,1,xk,2, . . . ,xk,m by the rule that xk,i+1 = PC(x

k,i−tkgk,i),
where gk,i ∈ ∂fi+1(x

k,i) and tk > 0 is a positive stepsize. Finally, the next iterate
is defined by xk+1 = xk,m.

The Incremental Projected Subgradient Method

Initialization: pick x0 ∈ C arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) set xk,0 = xk and pick a stepsize tk > 0;

(b) for any i = 0, 1, . . . ,m− 1 compute

xk,i+1 = PC(x
k,i − tkg

k,i),

where gk,i ∈ ∂fi+1(x
k,i);

(c) set xk+1 = xk,m.

The fundamental inequality from which convergence results can be deduced is
proven in the following lemma. The result is similar to the result in Lemma 8.11,
but the proof is considerably more complicated.
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230 Chapter 8. Primal and Dual Projected Subgradient Methods

Lemma 8.39 (fundamental inequality for the incremental projected sub-
gradient method).45 Suppose that Assumptions 8.7 and 8.38 hold, and let {xk}k≥0
be the sequence generated by the incremental projected subgradient method with pos-
itive stepsizes {tk}k≥0. Then for any k ≥ 0,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2tk(f(x
k)− fopt) + t2km

2L2. (8.58)

Proof. For any x∗ ∈ X∗, k ≥ 0 and i ∈ {0, 1, . . . ,m− 1},

‖xk,i+1 − x∗‖2 = ‖PC(xk,i − tkg
k,i)− x∗‖2

= ‖PC(xk,i − tkg
k,i)− PC(x

∗)‖2
(∗)
≤ ‖xk,i − tkg

k,i − x∗‖2
(∗∗)
≤ ‖xk,i − x∗‖2 − 2tk〈gk,i,xk,i − x∗〉+ t2kL

2

(∗∗∗)
≤ ‖xk,i − x∗‖2 − 2tk(fi+1(x

k,i)− fi+1(x
∗)) + t2kL

2,

where (∗) follows by the nonexpansivity property of the orthogonal projection oper-
ator (Theorem 6.42(b)), (∗∗) by Assumption 8.38(b), and (∗∗∗) by the subgradient
inequality. Summing the inequality over i = 0, 1, . . . ,m− 1 and using the identities
xk,0 = xk,xk,m = xk+1, we obtain that for any x∗ ∈ X∗,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2tk

m−1∑
i=0

(
fi+1(x

k,i)− fi+1(x
∗)
)
+ t2kmL2

= ‖xk − x∗‖2 − 2tk

(
f(xk)− fopt +

m−1∑
i=0

(fi+1(x
k,i)− fi+1(x

k))

)
+ t2kmL2

≤ ‖xk − x∗‖2 − 2tk(f(x
k)− fopt) + 2tk

m−1∑
i=0

L‖xk,i − xk‖+ t2kmL2, (8.59)

where in the last inequality we used the fact that by Assumptions 8.7 and 8.38,
C ⊆ int(dom(f)) ⊆ int(dom(fi+1)) and ‖g‖ ≤ L for all g ∈ ∂fi+1(x),x ∈ C, and
thus, by Theorem 3.61, fi+1 is Lipschitz with constant L over C.

Now, using the nonexpansivity of the orthogonal projection operator,

‖xk,1 − xk‖ = ‖PC(xk,0 − tkg
k,0)− PC(x

k)‖ ≤ tk‖gk,0‖ ≤ tkL.

Similarly,

‖xk,2 − xk‖ = ‖PC(xk,1 − tkg
k,1)− PC(x

k)‖ ≤ ‖xk,1 − xk‖+ tk‖gk,1‖ ≤ 2tkL.

In general, for any i = 0, 1, 2, . . . ,m− 1,

‖xk,i − xk‖ ≤ tkiL,

and we can thus continue (8.59) and deduce that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2tk(f(x
k)− fopt) + 2t2k

m−1∑
i=0

iL2 + t2kmL
2

= ‖xk − x∗‖2 − 2tk(f(x
k)− fopt) + t2km

2L2.

45The fundamental inequality for the incremental projected subgradient method is taken from
Nedić and Bertsekas [89].
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8.4. The Incremental Projected Subgradient Method 231

From this point, equipped with Lemma 8.39, we can use the same techniques
used in the proofs of Theorems 8.25 and 8.30, for example, and establish the fol-
lowing result, whose proof is detailed here for the sake of completeness.

Theorem 8.40 (convergence of incremental projected subgradient). Sup-
pose that Assumptions 8.7 and 8.38 hold. Let {xk}k≥0 be the sequence generated
by the incremental stochastic projected subgradient method with positive stepsizes
{tk}k≥0, and let {fkbest}k≥0 be the sequence of best achieved values defined in (8.11).

(a) If
∑k

n=0 t
2
n∑

k
n=0 tn

→ 0 as k → ∞, then fkbest → fopt as k → ∞.

(b) Assume that C is compact. Let Θ be an upper bound on the half-squared
diameter of C:

Θ ≥ max
x,y∈C

1

2
‖x− y‖2.

If tk =
√
Θ

Lm
√
k+1

, then for all k ≥ 2,

fkbest − fopt ≤
δmL

√
Θ√

k + 2
,

where δ = 2(2 + log(3)).

Proof. By Lemma 8.39, for any n ≥ 0,

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − 2tn(f(x
n)− fopt) + L2m2t2n. (8.60)

Summing (8.60) over n = p, p+ 1, . . . , k, we obtain

‖xk+1 − x∗‖2 ≤ ‖xp − x∗‖2 − 2

k∑
n=p

tn(f(x
n)− fopt) + L2m2

k∑
n=p

t2n.

Therefore,

2

k∑
n=p

tn(f(x
n)− fopt) ≤ ‖xp − x∗‖2 + L2m2

k∑
n=p

t2n,

and hence

fkbest − fopt ≤
‖xp − x∗‖2 + L2m2

∑k
n=p t

2
n

2
∑k
n=p tn

. (8.61)

Plugging p = 0 into (8.61), we obtain

fkbest − fopt ≤
‖x0 − x∗‖2 + L2m2

∑k
n=0 t

2
n

2
∑k
n=0 tn

.

Therefore, if
∑k

n=0 t
2
n∑

k
n=0 tn

→ 0 as k → ∞, then fkbest → fopt as k → ∞, proving claim

(a). To show the validity of claim (b), use (8.61) with p = �k/2� to obtain

fkbest − fopt ≤
2Θ+ L2m2

∑k
n=�k/2� t

2
n

2
∑k
n=�k/2� tn

.
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232 Chapter 8. Primal and Dual Projected Subgradient Methods

Take tn =
√
Θ

Lm
√
n+1

. Then we get

fkbest − fopt ≤
Lm

√
Θ

2

2 +
∑k
n=�k/2�

1
n+1∑k

n=�k/2�
1√
n+1

,

which, combined with Lemma 8.27(b) (with D = 2), yields the desired result.

8.5 The Dual Projected Subgradient Method

8.5.1 The Dual Problem

Consider the problem

fopt = min f(x)

s.t. g(x) ≤ 0,

x ∈ X,

(8.62)

where the following assumptions are made.

Assumption 8.41.

(A) X ⊆ E is convex.

(B) f : E → R is convex.

(C) g(·) = (g1(·), g2(·), . . . , gm(·))T , where g1, g2, . . . , gm : E → R are convex.

(D) The problem has a finite optimal value denoted by fopt, and the optimal set,
denoted by X∗, is nonempty.

(E) There exists x̄ ∈ X for which g(x̄) < 0.

(F) For any λ ∈ Rm+ , the problem minx∈X{f(x) + λTg(x)} has an optimal solu-
tion.

The Lagrangian dual objective function of problem (8.62) is given by

q(λ) = min
x∈X

{
L(x;λ) ≡ f(x) + λTg(x)

}
. (8.63)

By Assumption 8.41(F), the minimization problem in (8.63) possesses a solution,
and thus, in particular, q(λ) is finite for any λ ∈ Rm+ . Recall that q is concave over
Rm+ (as a minimum of affine and, in particular, concave functions), and hence the
dual problem, which is given by

qopt = max{q(λ) : λ ∈ R
m
+}, (8.64)

is a convex problem, as it consists of maximizing a concave function over a convex
set. We note that the dual problem is defined in the space Rm, which we assume
in this context to be endowed with the dot product and the l2-norm.
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8.5. The Dual Projected Subgradient Method 233

By Theorem A.1 and Assumption 8.41, it follows that strong duality holds for
the primal-dual pair of problems (8.62) and (8.64), namely,

fopt = qopt

and the optimal solution of the dual problem is attained. We will denote the optimal
set of the dual problem as Λ∗.

An interesting property of the dual problem under the Slater-type assumption
(part (E) of Assumption 8.41) is that its superlevel sets are bounded.

Theorem 8.42 (boundedness of superlevel sets of the dual objective func-
tion).46 Suppose that Assumption 8.41 holds. Let x̄ ∈ X be a point satisfying g(x̄) <
0 whose existence is warranted by Assumption 8.41(E). Let μ ∈ R. Then for any
λ ∈ Sμ ≡ {λ ∈ Rm+ : q(λ) ≥ μ},

‖λ‖2 ≤ f(x̄)− μ

minj=1,2,...,m{−gj(x̄)}
.

Proof. Since λ ∈ Sμ, we have

μ ≤ q(λ) ≤ f(x̄) + λTg(x̄) = f(x̄) +

m∑
j=1

λjgj(x̄).

Therefore,

−
m∑
j=1

λjgj(x̄) ≤ f(x̄)− μ,

which, by the facts that λj ≥ 0 and gj(x̄) < 0 for all j, implies that

m∑
j=1

λj ≤ f(x̄)− μ

minj=1,2,...,m{−gj(x̄)}
.

Finally, since λ ≥ 0, we have that ‖λ‖2 ≤
∑m
j=1 λj , and the desired result is

established.

Taking μ = fopt = qopt, we have Sμ = Λ∗, and Theorem 8.42 amounts to the
following corollary describing a bound on the dual optimal set.

Corollary 8.43 (boundedness of the optimal dual set). Suppose that As-
sumption 8.41 holds, and let Λ∗ be the optimal set of the dual problem (8.64). Let
x̄ ∈ X be a point satisfying g(x̄) < 0 whose existence is warranted by Assumption
8.41(E). Then for any λ ∈ Λ∗,

‖λ‖2 ≤ f(x̄)− fopt
minj=1,2,...,m{−gj(x̄)}

.

46Theorem 8.42 is Lemma 1 from Nedić and Ozdaglar [90].
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234 Chapter 8. Primal and Dual Projected Subgradient Methods

8.5.2 The Dual Projected Subgradient Method

We begin by recalling how to compute a subgradient of minus of the dual objective
function. By Example 3.7, if for a given λ ∈ Rm+ the minimum of the problem

defining q(λ) is attained at xλ ∈ X , meaning if q(λ) = f(xλ) + λTg(xλ), then
−g(xλ) ∈ ∂(−q)(λ).

Using the above expression for the subgradient of −q, we can define the pro-
jected subgradient method employed on the dual problem.

The Dual Projected Subgradient Method

Initialization: pick λ0 ∈ Rm+ arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick a positive number γk;

(b) compute xk ∈ argminx∈X

{
f(x) + (λk)Tg(x)

}
;

(c) if g(xk) = 0, then terminate with an output xk; otherwise,

λk+1 =

[
λk + γk

g(xk)

‖g(xk)‖2

]
+

.

The stepsize γk
‖g(xk)‖2 is similar in form to the normalized stepsizes considered in

Section 8.2.4. The fact that the condition g(xk) = 0 guarantees that xk is an
optimal solution of problem (8.62) is established in the following lemma.

Lemma 8.44. Suppose that Assumption 8.41 holds. Let λ̄ ∈ Rm+ , and let x̄ ∈ X
be such that

x̄ ∈ argminx∈X

{
f(x) + λ̄

T
g(x)

}
(8.65)

and g(x̄) = 0. Then x̄ is an optimal solution of problem (8.62).

Proof. Let x be a feasible point of problem (8.62), meaning that x ∈ X and
g(x) ≤ 0. Then

f(x) ≥ f(x) + λ̄
T
g(x) [g(x) ≤ 0, λ̄ ≥ 0]

≥ f(x̄) + λ̄
T
g(x̄) [(8.65)]

= f(x̄), [g(x̄) = 0]

establishing the optimality of x̄.

8.5.3 Convergence Analysis

Proving convergence of the dual objective function sequence {q(λk)}k≥0 under vari-
ous choices of the parameters {γk}k≥0 is an easy task since such results were already
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8.5. The Dual Projected Subgradient Method 235

proven in the previous sections. The more interesting question is whether we can
prove convergence in some sense of a primal sequence. The answer is yes, but per-
haps quite surprisingly the sequence {xk}k≥0 is not the “correct” primal sequence.
We will consider the following two possible definitions of the primal sequence that
involve averaging of the sequence {xk}k≥0.

• Full averaging sequence. In this option, we perform averaging of the entire
history of iterates:

x(k) =

k∑
n=0

μknx
n (8.66)

with μkn defined by

μkn =
γn/‖g(xn)‖2∑k
j=0

γj
‖g(xj)‖2

, n = 0, 1, . . . , k. (8.67)

• Partial averaging sequence. Here, at iteration k, we only perform averag-
ing of iterations �k/2�, �k/2�+ 1, . . . , k:

x〈k〉 =
k∑

n=�k/2�
ηknx

n (8.68)

with ηkn defined by

ηkn =
γn/‖g(xn)‖2∑k
j=�k/2�

γj
‖g(xj)‖2

, n = �k/2�, . . . , k. (8.69)

Our underlying assumption will be that the method did not terminate, meaning
that g(xk) 
= 0 for any k.

Lemma 8.45. Suppose that Assumption 8.41 holds, and assume further that there
exists L > 0 such that ‖g(x)‖2 ≤ L for any x ∈ X. Let ρ > 0 be some positive num-
ber, and let {xk}k≥0 and {λk}k≥0 be the sequences generated by the dual projected
subgradient method. Then for any k ≥ 2,

f(x(k))− fopt + ρ‖[g(x(k))]+‖2 ≤ L

2

(‖λ0‖2 + ρ)2 +
∑k

n=0 γ
2
n∑k

n=0 γn
(8.70)

and

f(x〈k〉)− fopt + ρ‖[g(x〈k〉)]+‖2 ≤ L

2

(‖λ�k/2�‖2 + ρ)2 +
∑k
n=�k/2� γ

2
n∑k

n=�k/2� γn
, (8.71)

where x(k) and x〈k〉 are given in (8.66) and (8.68), respectively.
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236 Chapter 8. Primal and Dual Projected Subgradient Methods

Proof. Let λ̄ ∈ Rm+ . Then for every n ≥ 0,

‖λn+1 − λ̄‖22 =

∥∥∥∥∥
[
λn + γn

g(xn)

‖g(xn)‖2

]
+

− [λ̄]+

∥∥∥∥∥
2

2

≤
∥∥∥∥λn + γn

g(xn)

‖g(xn)‖2
− λ̄

∥∥∥∥2
2

= ‖λn − λ̄‖22 + γ2n +
2γn

‖g(xn)‖2
g(xn)T (λn − λ̄),

where the inequality follows by the nonexpansivity of the orthogonal projection
operator (Theorem 6.42(b)). Let p ∈ {0, 1, 2, . . . , k}. Summing the above inequality
for n = p, p+ 1, . . . , k, we obtain that

‖λk+1 − λ̄‖22 ≤ ‖λp − λ̄‖22 +
k∑

n=p

γ2n + 2

k∑
n=p

γn
‖g(xn)‖2

g(xn)T (λn − λ̄).

Therefore,

2

k∑
n=p

γn
‖g(xn)‖2

g(xn)T (λ̄ − λn) ≤ ‖λp − λ̄‖22 +
k∑

n=p

γ2n. (8.72)

To facilitate the proof of the lemma, we will define for any p ∈ {0, 1, . . . , k}

xk,p ≡
k∑

n=p

αk,pn xn, (8.73)

where

αk,pn =

γn
‖g(xn)‖2∑k
j=p

γj
‖g(xj)‖2

.

In particular, the sequences {xk,0}k≥0, {xk,�k/2�}k≥0 are the same as the sequences
{x(k)}k≥0 and {x〈k〉}k≥0, respectively. Using the above definition of αk,pn and the
fact that ‖g(xn)‖2 ≤ L, we conclude that (8.72) implies the following inequality:

k∑
n=p

αk,pn g(xn)T (λ̄− λn) ≤ L

2

‖λp − λ̄‖22 +
∑k
n=p γ

2
n∑k

n=p γn
. (8.74)

By the definition of xn, we have for any x∗ ∈ X∗,

f(x∗) ≥ f(x∗) + (λn)Tg(x∗) [λn ≥ 0,g(x∗) ≤ 0]

≥ f(xn) + (λn)Tg(xn). [xn ∈ argminx∈X{f(x) + (λn)Tg(x)}]

Thus,

−(λn)Tg(xn) ≥ f(xn)− fopt,
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8.5. The Dual Projected Subgradient Method 237

and hence

k∑
n=p

αk,pn g(xn)T (λ̄− λn) ≥
k∑

n=p

αk,pn g(xn)T λ̄+

k∑
n=p

αk,pn f(xn)−
k∑

n=p

αk,pn fopt

≥ λ̄
T
g
(
xk,p

)
+ f

(
xk,p

)
− fopt, (8.75)

where the last inequality follows by Jensen’s inequality (recalling that f and the
components of g are convex) and the definition (8.73) of xk,p. Combining (8.74)
and (8.75), while using the obvious inequality ‖λp− λ̄‖2 ≤ ‖λp‖2+‖λ̄‖2, we obtain

f(xk,p)− fopt + λ̄
T
g(xk,p) ≤ L

2

(‖λp‖2 + ‖λ̄‖2)2 +
∑k

n=p γ
2
n∑k

n=p γn
. (8.76)

Plugging

λ̄ =

⎧⎪⎨⎪⎩ ρ [g(xk,p)]+
‖[g(xk,p)]+‖2 , [g(xk,p)]+ 
= 0,

0, [g(xk,p)]+ = 0

into (8.76), we obtain the inequality

f(xk,p)− fopt + ρ‖[g(xk,p)]+‖2 ≤ L

2

(‖λp‖2 + ρ)2 +
∑k

n=p γ
2
n∑k

n=p γn
. (8.77)

Substituting p = 0 and p = �k/2� in (8.77) yields the inequalities (8.70) and (8.71),
respectively.

Analysis of the Full Averaging Scheme

We begin by developing a convergence rate related to the sequence {x(k)}k≥0 given
by (8.66). Similarly to the analysis for the primal projected subgradient, choosing
γk = 1√

k+1
will imply that the right-hand side of (8.70) will converge to zero.

In principle, the fact that the left-hand side of (8.70) converges to zero does not
necessarily imply that both the expression for the distance to optimality in function
values f(x(k))− fopt and the expression for the constraints violation ‖[g(x(k))]+‖2
converge to zero. However, using Theorem 3.60, we can show the convergence of
these terms as long as ρ is chosen appropriately.

Theorem 8.46 (O(log(k)/
√
k) rate of convergence of the full averaging

sequence). Suppose that Assumption 8.41 holds, and assume further that there
exists L > 0 for which ‖g(x)‖2 ≤ L for any x ∈ X. Let {xk}k≥0, and let {λk}k≥0
be the sequences generated by the dual projected subgradient method with γk = 1√

k+1
.

Then for any k ≥ 1,

f(x(k))− fopt ≤
L

2

(‖λ0‖2 + 2α)2 + 1 + log(k + 1)√
k + 1

, (8.78)

‖[g(x(k))]+‖2 ≤ L

2α

(‖λ0‖2 + 2α)2 + 1+ log(k + 1)√
k + 1

, (8.79)
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238 Chapter 8. Primal and Dual Projected Subgradient Methods

where {x(k)}k≥0 is given in (8.66) and

α =
f(x̄)− fopt

minj=1,2,...,m{−gj(x̄)}
,

with x̄ being a Slater point whose existence is guaranteed by Assumption 8.41(E).

Proof. Employing Lemma 8.45 with ρ = 2α, and substituting γn = 1√
n+1

, we have

f(x(k))− fopt + 2α‖[g(x(k))]+‖2 ≤ L

2

(‖λ0‖2 + 2α)2 +
∑k

n=0
1

n+1∑k
n=0

1√
n+1

. (8.80)

Using Lemma 8.27(a), we have

(‖λ0‖2 + 2α)2 +
∑k

n=0
1

n+1∑k
n=0

1√
n+1

≤ (‖λ0‖2 + 2α)2 + 1 + log(k + 1)√
k + 1

,

which, combined with (8.80), yields the inequality

f(x(k))− fopt + 2α‖[g(x(k))]+‖2 ≤ L

2

(‖λ0‖2 + 2α)2 + 1 + log(k + 1)√
k + 1

. (8.81)

Since by Corollary 8.43 2α is an upper bound on twice the l2-norm of any dual
optimal solution, it follows by Theorem 3.60 that the inequality (8.81) implies the
two inequalities (8.78) and (8.79).

Analysis of the Partial Averaging Scheme

We will now show an O(1/
√
k) rate of convergence in terms of function values as well

as constraint violation of the partial averaging sequence given in (8.68). The proof
is similar to the proof of Theorem 8.46 and utilizes inequality (8.71) but in addition
utilizes the boundedness of the sequence of dual variables—a fact established in the
next lemma.

Lemma 8.47.47 Suppose that Assumption 8.41 holds and assume further that there
exists L > 0 for which ‖g(x)‖2 ≤ L for any x ∈ X. Let {xk}k≥0 and {λk}k≥0
be the sequences generated by the dual projected subgradient method with positive
stepsizes γk satisfying γk ≤ γ0 for all k ≥ 0. Then

‖λk‖2 ≤ M, (8.82)

where48

M =

{
‖λ0‖2 + 2α,

f(x̄)− qopt
β

+
γ0L

2β
+ 2α+ γ0

}
, (8.83)

47Lemma 8.47 is Lemma 3 from Nedić and Ozdaglar [90].
48Recall that in our setting qopt = fopt.
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8.5. The Dual Projected Subgradient Method 239

with

α =
f(x̄)− fopt

minj=1,2,...,m{−gj(x̄)}
, β = min

j=1,2,...,m
{−gj(x̄)},

where x̄ is a Slater point of problem (8.62) whose existence is guaranteed by As-
sumption 8.41(E).

Proof. Let λ∗ be an optimal solution of the dual problem (8.64). We begin by
showing by induction on k that for any k ≥ 0,

‖λk − λ∗‖2 ≤ max

{
‖λ0 − λ∗‖2,

f(x̄)− qopt
β

+
γ0L

2β
+ ‖λ∗‖2 + γ0

}
. (8.84)

The inequality holds trivially for k = 0. Assume that it holds for k, and we will
show that it holds for k + 1. We will consider two cases.

Case I. Assume that q(λk) ≥ qopt − γkL
2 . Then, by Theorem 8.42,

‖λk‖2 ≤
f(x̄)− qopt +

γkL
2

β
,

where β = mini=1,2,...,m{−gi(x̄)}. Therefore,

‖λk+1 − λ∗‖2 ≤
∥∥∥∥λk + γk

‖g(xk)‖2
g(xk)− λ∗

∥∥∥∥
2

≤ ‖λk‖2 + ‖λ∗‖2 + γk

≤ f(x̄)− qopt
β

+
γkL

2β
+ ‖λ∗‖2 + γk

≤ f(x̄)− qopt
β

+
γ0L

2β
+ ‖λ∗‖2 + γ0.

Case II. Now assume that q(λk) < qopt − γkL
2 . In this case we can write

‖λk+1 − λ∗‖22 =

∥∥∥∥∥
[
λk +

γk
‖g(xk)‖2

g(xk)

]
+

− λ∗

∥∥∥∥∥
2

2

≤
∥∥∥∥λk − λ∗ +

γk
‖g(xk)‖2

g(xk)

∥∥∥∥2
2

= ‖λk − λ∗‖22 + 2
γk

‖g(xk)‖2
(λk − λ∗)Tg(xk) + γ2k. (8.85)

Since −g(xk) ∈ ∂(−q)(λk) (Example 3.7), it follows by the subgradient inequality
that

−qopt ≥ −q(λk)− g(xk)T (λ∗ − λk).
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240 Chapter 8. Primal and Dual Projected Subgradient Methods

Therefore, continuing (8.85),

‖λk+1 − λ∗‖2 ≤ ‖λk − λ∗‖22 + 2
γk

‖g(xk)‖2
(q(λk)− qopt) + γ2k

≤ ‖λk − λ∗‖22 + 2
γk
L
(q(λk)− qopt) + γ2k

= ‖λk − λ∗‖22 + 2
γk
L

(
q(λk)− qopt +

γkL

2

)
< ‖λk − λ∗‖22,

where in the last inequality we used our assumption that q(λk) < qopt − γkL
2 . We

can now use the induction hypothesis and conclude that

‖λk+1 − λ∗‖2 ≤ max

{
‖λ0 − λ∗‖2,

f(x̄)− qopt
β

+
γ0L

2β
+ ‖λ∗‖2 + γ0

}
.

We have thus established the validity of (8.84) for all k ≥ 0. The result (8.82) now
follows by recalling that by Corollary 8.43, ‖λ∗‖2 ≤ α, and hence

‖λk‖2 ≤ ‖λk − λ∗‖2 + ‖λ∗‖2

≤ max

{
‖λ0 − λ∗‖2,

f(x̄)− qopt
β

+
γ0L

2β
+ ‖λ∗‖2 + γ0

}
+ ‖λ∗‖2

≤ max

{
‖λ0‖2 + 2α,

f(x̄)− qopt
β

+
γ0L

2β
+ 2α+ γ0

}
.

Equipped with the upper bound on the sequence of dual variables, we can
prove, using a similar argument to the one used in the proof of Theorem 8.46, an
O(1/

√
k) rate of convergence related to the partial averaging sequence generated

by the dual projected subgradient method.

Theorem 8.48 (O(1/
√
k) rate of convergence of the partial averaging

sequence). Suppose that Assumption 8.41 holds, and assume further that there
exists L > 0 for which ‖g(x)‖2 ≤ L for any x ∈ X. Let {xk}k≥0, and let {λk}k≥0
be the sequences generated by the dual projected subgradient method with γk = 1√

k+1
.

Then for any k ≥ 2,

f(x〈k〉)− fopt ≤
2L((M + 2α)2 + log(3))√

k + 2
, (8.86)

‖[g(x〈k〉)]+‖2 ≤ 2L((M + 2α)2 + log(3))

α
√
k + 2

, (8.87)

where {x〈k〉}k≥0 is given in (8.68), M in (8.83), and

α =
f(x̄)− fopt

minj=1,2,...,m{−gj(x̄)}

with x̄ being a Slater point whose existence is guaranteed by Assumption 8.41(E).
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8.5. The Dual Projected Subgradient Method 241

Proof. Employing Lemma 8.45 with ρ = 2α, and substituting γn = 1√
n+1

, we have

f(x〈k〉)− fopt + 2α‖[g(x〈k〉)]+‖2 ≤ L

2

(‖λ�k/2�‖2 + 2α)2 +
∑k

n=�k/2�
1

n+1∑k
n=�k/2�

1√
n+1

≤ L

2

(M + 2α)2 +
∑k
n=�k/2�

1
n+1∑k

n=�k/2�
1√
n+1

, (8.88)

where in the last inequality we used the bound on the dual iterates given in Lemma
8.47. Now, using Lemma 8.27(b), we have

(M + 2α)2 +
∑k
n=�k/2�

1
n+1∑k

n=�k/2�
1√
n+1

≤ 4((M + 2α)2 + log(3))√
k + 2

,

which, combined with (8.88), yields the inequality

f(x〈k〉)− fopt + 2α‖[g(x〈k〉)]+‖2 ≤ 2L((M + 2α)2 + log(3))√
k + 2

. (8.89)

Since, by Corollary 8.43, 2α is an upper bound on twice the l2-norm of any
dual optimal solution, it follows by Theorem 3.60 that the inequality (8.89) implies
the two inequalities (8.86) and (8.87).

To derive a complexity result for the dual projected subgradient method, we
should first note that the primal sequence is not feasible, as it does not necessarily
satisfy the inequality constraints g(x) ≤ 0. Therefore, there is no point in asking
how many iterations are required to obtain an ε-optimal solution. Instead, we will
consider the related concept of an ε-optimal and feasible solution. A vector x ∈ X
is called an ε-optimal and feasible solution of problem (8.62) if f(x)− fopt ≤ ε and
‖[g(x)]+‖2 ≤ ε. Theorem 8.48 immediately implies a complexity result stating that
an order of 1

ε2 iterations are required to obtain an ε-optimal and feasible solution.

Corollary 8.49 (O(1/ε2) complexity result for the dual projected subgra-
dient method). Under the setting of Theorem 8.48, if k ≥ 2 satisfies

k ≥ 4L2((M + 2α)2 + log(3))2

min{α2, 1}ε2 − 2,

then

f(x〈k〉)− fopt ≤ ε,

‖[g(x〈k〉)]+‖2 ≤ ε.

Example 8.50 (linear programming example). Consider the linear program-
ming problem

(LP)

min cTx

s.t. Ax ≤ b,

x ∈ Δn,
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242 Chapter 8. Primal and Dual Projected Subgradient Methods

where c ∈ Rn,A ∈ Rm×n, and b ∈ Rm. We will consider the dual projected
subgradient method when the underlying set X is Δn and g(x) ≡ Ax − b. The
vector xk is calculated by the update rule xk ∈ argminx∈Δn

(c + ATλk)Tx. It is
easy to see that an optimal solution of this subproblem is given by ei, where i is an
index for which (c+ATλk)i is minimal. Therefore, the algorithm (with γk = 1√

k+1
)

takes the following form:

Dual Projected Subgradient for solving (LP)

• Initialization: pick λ0 ∈ Rm+ .

• General step (k ≥ 0):

ik ∈ argmini=1,2,...,nvi; v = c+ATλk,

xk = eik ,

λk+1 =

[
λk +

1√
k + 1

Axk − b

‖Axk − b‖2

]
+

.

Note that we make the implicit assumption that Axk 
= b. The above descrip-
tion of the dual projected subgradient method illustrates the fact that the sequence
{xk}k≥0 is not the “correct” primal sequence. Indeed, in this case, the vectors xk

are always unit vectors, and there is no particular reason why the solution of (LP)
should be attained at a unit vector. As a specific example, consider the problem

min x1 + 3x2 + 2x3

s.t. 3x1 + 2x2 − x3 ≤ 1,

−2x3 ≤ 2,

x1 + x2 + x3 = 1,

x1, x2, x3 ≥ 0,

(8.90)

which fits problem (LP) with

A =

⎛⎜⎝3 2 −1

0 0 −2

⎞⎟⎠ , b =

⎛⎜⎝1

2

⎞⎟⎠ , c =

⎛⎜⎜⎜⎜⎝
1

3

2

⎞⎟⎟⎟⎟⎠ .

The optimal solution of problem (8.90) is (12 , 0,
1
2 ). We employed the dual projected

subgradient method as described above with λ0 = 0 and compared the behavior of
the full and partial averaging schemes during the first 100 iterations. The results are
described in Figure 8.4. Obviously, the partial averaging scheme exhibits superior
behavior compared to the full averaging scheme.
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Figure 8.4. First 100 iterations of the dual projected subgradient method
employed on problem (8.90). The y-axis describes (in log scale) the quantities
max{f(x(k))− fopt, ‖[Ax(k) − b]+‖2} and max{f(x〈k〉)− fopt, ‖[Ax〈k〉 − b]+‖2}.

8.5.4 Example—Network Utility Maximization

Consider a network that consists of a set S = {1, 2, . . . , S} of sources and a set
L = {1, 2, . . . , L} of links, where a link 
 has a capacity c. For each source s ∈ S,
we denote by L(s) ⊆ L the set of all links used by source s. Similarly, for a given
link 
 ∈ L, the set S(
) ⊆ S comprises all sources that use link 
. In particular, for
a pair 
 ∈ L and s ∈ S, the relation s ∈ S(
) holds if and only if 
 ∈ L(s). Each
source s ∈ S is associated with a concave utility function us : R → R, meaning that
if source s sends data at a rate xs, it gains a utility us(xs). We also assume that the
rate of source s is constrained to be in the interval Is = [0,Ms], where Ms ∈ R++.
The goal of the network utility maximization problem (abbreviated NUM) is to
allocate the source rates as the optimal solution of the following convex problem:

max
∑
s∈S

us(xs)

s.t.
∑
s∈S()

xs ≤ c, 
 ∈ L,

xs ∈ Is, s ∈ S.

(8.91)

Problem (8.91) in its minimization form is a convex problem and fits the main model
(8.62) with

g(x) =

⎛⎝ ∑
s∈S()

xs − c

⎞⎠
=1,2,...,L

,

X = I1 × I2 × · · · × IS ,

f(x) = −
S∑
s=1

us(xs).
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244 Chapter 8. Primal and Dual Projected Subgradient Methods

At iteration k, the vector xk is picked as an optimal solution of the problem
minx∈X{f(x) + (λk)Tg(x)}, meaning

xk ∈ argminx∈X

{
f(x) + (λk)Tg(x)

}
= argminx∈X

⎧⎨⎩−
S∑
s=1

us(xs) +
L∑
=1

λk

⎡⎣ ∑
s∈S()

xs − c

⎤⎦⎫⎬⎭
= argminx∈X

⎧⎨⎩−
S∑
s=1

us(xs) +
L∑
=1

∑
s∈S()

λkxs

⎫⎬⎭
= argminx∈X

⎧⎨⎩−
S∑
s=1

us(xs) +

S∑
s=1

⎡⎣ ∑
∈L(s)

λk

⎤⎦xs
⎫⎬⎭ .

The above minimization problem is separable w.r.t. the decision variables x1, x2, . . . ,
xS . Therefore, the sth element of xk can be chosen via the update rule (returning
to the max form),

xks ∈ argmaxxs∈Is

⎧⎨⎩us(xs)−
⎡⎣ ∑
∈L(s)

λk

⎤⎦ xs
⎫⎬⎭ .

The dual projected subgradient method employed on problem (8.91) with stepsizes
αk and initialization λ0 = 0 therefore takes the form below. Note that we do not
consider here a normalized stepsize (actually, in many practical scenarios, a constant
stepsize is used).

Dual Projected Subgradient Method for Solving the NUM Problem
(8.91)

Initialization: define λ0 = 0 for all 
 ∈ L.

(A) Source-rate update:

xks = argmaxxs∈Is

⎧⎨⎩us(xs)−
⎡⎣ ∑
∈L(s)

λk

⎤⎦ xs
⎫⎬⎭ , s ∈ S. (8.92)

(B) Link-price update:

λk+1
 =

⎡⎣λk + αk

⎛⎝ ∑
s∈S()

xks − c

⎞⎠⎤⎦
+

, 
 ∈ L.

The multipliers λk can actually be seen as prices that are associated with the
links. The algorithm above can be implemented in a distributed manner in the
following sense:
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8.5. The Dual Projected Subgradient Method 245

(a) Each source s needs to solve the optimization problem (8.92) involving only
its own utility function us and the multipliers (i.e., prices) associated with the
links that it uses, meaning λk , 
 ∈ L(s).

(b) The price (i.e., multiplier) at each link 
 is updated according to the rates of
the sources that use the link 
, meaning xs, s ∈ S(
).

Therefore, the algorithm only requires local communication between sources and
links and can be implemented in a decentralized manner by letting both the sources
and the links cooperatively seek an optimal solution of the problem by following
the source-rate/price-link update scheme described above. This is one example of
a distributed optimization method.
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Chapter 9

Mirror Descent

This chapter is devoted to the study of the mirror descent method and some of its
variations. The method is essentially a generalization of the projected subgradient
method to the non-Euclidean setting. Therefore, naturally, we will not assume in
the chapter that the underlying space is Euclidean.

9.1 From Projected Subgradient to Mirror Descent
Consider the optimization problem

(P) min{f(x) : x ∈ C}, (9.1)

where we assume the following.49

Assumption 9.1.

(A) f : E → (−∞,∞] is proper closed and convex.

(B) C ⊆ E is nonempty closed and convex.

(C) C ⊆ int(dom(f)).

(D) The optimal set of (P) is nonempty and denoted by X∗. The optimal value of
the problem is denoted by fopt.

The projected subgradient method for solving problem (P) was studied in
Chapter 8. One of the basic assumptions made in Chapter 8, which was used
throughout the analysis, is that the underlying space is Euclidean, meaning that
‖ · ‖ =

√
〈·, ·〉. Recall that the general update step of the projected subgradient

method has the form

xk+1 = PC(x
k − tkf

′(xk)), f ′(xk) ∈ ∂f(xk), (9.2)

for an appropriately chosen stepsize tk. When the space is non-Euclidean, there is
actually a “philosophical” problem with the update rule (9.2)—the vectors xk and

49Assumption 9.1 is the same as Assumption 8.7 from Chapter 8.

247
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248 Chapter 9. Mirror Descent

f ′(xk) are in different spaces; one is in E, while the other in E∗. This issue is of
course not really problematic since we can use our convention that the vectors in
E and E∗ are the same, and the only difference is in the norm associated with each
of the spaces. Nonetheless, this issue is one of the motivations for seeking gener-
alizations of the projected subgradient method better suited to the non-Euclidean
setting.

To understand the role of the Euclidean norm in the definition of the projected
subgradient method, we will consider the following reformulation of the update step
(9.2):

xk+1 = argminx∈C

{
f(xk) + 〈f ′(xk),x− xk〉+ 1

2tk
‖x− xk‖2

}
, (9.3)

which actually shows that xk+1 is constructed by minimizing a linearization of the
objective function plus a quadratic proximity term. The equivalence between the
two forms (9.2) and (9.3) in the Euclidean case is evident by the following identity:

f(xk) + 〈f ′(xk),x− xk〉+ 1

2tk
‖x− xk‖2 =

1

2tk

∥∥x−
[
xk − tkf

′(xk)
]∥∥2 +D,

where D is a constant (i.e., does not depend on x).
Coming back to the non-Euclidean case, the idea will be to replace the Eu-

clidean “distance” function 1
2‖x− y‖2 in (9.3) by a different distance, which is not

based on the Euclidean norm. The non-Euclidean distances that we will use are
Bregman distances.

Definition 9.2 (Bregman distance). Let ω : E → (−∞,∞] be a proper closed
and convex function that is differentiable over dom(∂ω). The Bregman distance
associated with ω is the function Bω : dom(ω)× dom(∂ω) → R given by

Bω(x,y) = ω(x)− ω(y)− 〈∇ω(y),x − y〉.

The assumptions on ω (given a set C) are gathered in the following.

Assumption 9.3 (properties of ω).

• ω is proper closed and convex.

• ω is differentiable over dom(∂ω).

• C ⊆ dom(ω).

• ω + δC is σ-strongly convex (σ > 0).

A Bregman distance is actually not necessarily a distance. It is nonnegative
and equal to zero if and only if its two arguments coincide, but other than that, in
general it is not symmetric and does not satisfy the triangle inequality. The prop-
erties of Bregman distances that do hold are summarized in the following lemma.
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9.1. From Projected Subgradient to Mirror Descent 249

Lemma 9.4 (basic properties of Bregman distances). Suppose that C ⊆ E is
nonempty closed and convex and that ω satisfies the properties in Assumption 9.3.
Let Bω be the Bregman distance associated with ω. Then

(a) Bω(x,y) ≥ σ
2 ‖x− y‖2 for all x ∈ C,y ∈ C ∩ dom(∂ω).

(b) Let x ∈ C and y ∈ C ∩ dom(∂ω). Then

– Bω(x,y) ≥ 0;

– Bω(x,y) = 0 if and only if x = y.

Proof. Part (a) follows by the first-order characterization of strongly convex
functions described in Theorem 5.24(ii). Part (b) is a direct consequence of part
(a).

Assume that xk ∈ C ∩ dom(∂ω). Replacing the term 1
2‖x − xk‖2 in formula

(9.3) by a Bregman distance Bω(x,x
k) leads to the following update step:

xk+1 = argminx∈C

{
f(xk) + 〈f ′(xk),x− xk〉+ 1

tk
Bω(x,x

k)

}
. (9.4)

Omitting constant terms, (9.4) becomes

xk+1 = argminx∈C

{
〈f ′(xk),x〉+ 1

tk
Bω(x,x

k)

}
. (9.5)

Further simplification of the update formula can be achieved by noting the following
simple identity:

〈f ′(xk),x〉+ 1

tk
Bω(x,x

k)

=
1

tk

[
〈tkf ′(xk)− ∇ω(xk),x〉 + ω(x)

]
− 1

tk
ω(xk) +

1

tk
〈∇ω(xk),xk〉︸ ︷︷ ︸

constant

.

Therefore, the update formula in its most simplified form reads as

xk+1 = argminx∈C
{
〈tkf ′(xk)− ∇ω(xk),x〉 + ω(x)

}
.

We are now ready to define the mirror descent method.

The Mirror Descent Method

Initialization: pick x0 ∈ C ∩ dom(∂ω).
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick a stepsize tk > 0 and a subgradient f ′(xk) ∈ ∂f(xk);

(b) set
xk+1 = argminx∈C

{
〈tkf ′(xk)− ∇ω(xk),x〉+ ω(x)

}
. (9.6)
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250 Chapter 9. Mirror Descent

Remark 9.5. Although (9.6) is the most simplified form of the update step of the
mirror descent method, the formula (9.5), which can also be written as

xk+1 = argminx∈C
{
〈tkf ′(xk),x〉+Bω(x,x

k)
}
, (9.7)

will also prove itself to be useful.

Remark 9.6. Defining ω̃ = ω + δC, we can write the step (9.6) as

xk+1 = argminx∈E
{
〈tkf ′(xk)− ∇ω(xk),x〉+ ω̃(x)

}
. (9.8)

Since ∇ω(xk) ∈ ∂ω̃(xk), we can write it as ω̃′(xk), so (9.8) becomes

xk+1 = argminx∈E
{
〈tkf ′(xk)− ω̃′(xk),x〉+ ω̃(x)

}
. (9.9)

Finally, by the conjugate correspondence theorem (Theorem 5.26), whose assump-
tions hold (properness, closedness, and strong convexity of ω̃), ω̃∗ is differentiable,
which, combined with the conjugate subgradient theorem (Corollary 4.21), yields that
(9.9) is equivalent to the following known formula for the mirror descent method:

xk+1 = ∇ω̃∗(ω̃′(xk)− tkf
′(xk)).

The basic step of the mirror descent method (9.6) is of the form

min
x∈C

{〈a,x〉 + ω(x)} (9.10)

for some a ∈ E∗. To show that the method is well defined, Theorem 9.8 below
establishes the fact that the minimum of problem (9.10) is uniquely attained at a
point in C ∩ dom(∂ω). The reason why it is important to show that the minimizer
is in dom(∂ω) is that the method requires computing the gradient of ω at the new
iterate vector (recall that ω is assumed to be differentiable over dom(∂ω)). We will
prove a more general lemma that will also be useful in other contexts.

Lemma 9.7. Assume the following:

• ω : E → (−∞,∞] is a proper closed and convex function differentiable over
dom(∂ω).

• ψ : E → (−∞,∞] is a proper closed and convex function satisfying dom(ψ) ⊆
dom(ω).

• ω + δdom(ψ) is σ-strongly convex (σ > 0).

Then the minimizer of the problem

min
x∈E

{ψ(x) + ω(x)} (9.11)

is uniquely attained at a point in dom(ψ) ∩ dom(∂ω).

Proof. Problem (9.11) is the same as

min
x∈E

ϕ(x), (9.12)
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9.1. From Projected Subgradient to Mirror Descent 251

where ϕ = ψ+ω. The function ϕ is closed since both ψ and ω are closed; it is proper
by the fact that dom(ϕ) = dom(ψ) 
= ∅. Since ω + δdom(ψ) is σ-strongly convex
and ψ is convex, their sum ψ + ω + δdom(ψ) = ψ + ω = ϕ is σ-strongly convex.
To conclude, ϕ is proper closed and σ-strongly convex, and hence, by Theorem
5.25(a), problem (9.12) has a unique minimizer x∗ in dom(ϕ) = dom(ψ). To show
that x∗ ∈ dom(∂ω), note that by Fermat’s optimality condition (Theorem 3.63),
0 ∈ ∂ϕ(x∗), and in particular ∂ϕ(x∗) 
= ∅. Therefore, since by the sum rule of
subdifferential calculus (Theorem 3.40), ∂ϕ(x∗) = ∂ψ(x∗) + ∂ω(x∗), it follows in
particular that ∂ω(x∗) 
= ∅, meaning that x∗ ∈ dom(∂ω).

The fact that the mirror descent method is well defined can now be easily
deduced.

Theorem 9.8 (mirror descent is well defined). Suppose that Assumptions 9.1
and 9.3 hold. Let a ∈ E∗. Then the problem

min
x∈C

{〈a,x〉+ ω(x)}

has a unique minimizer in C ∩ dom(∂ω).

Proof. The proof follows by invoking Lemma 9.7 with ψ(x) ≡ 〈a,x〉+ δC(x).

Two very common choices of strongly convex functions are described below.

Example 9.9 (squared Euclidean norm). Suppose that Assumption 9.1 holds
and that E is Euclidean, meaning that its norm satisfies ‖ · ‖ =

√
〈·, ·〉. Define

ω(x) =
1

2
‖x‖2.

Then ω obviously satisfies the properties listed in Assumption 9.3—it is proper
closed and 1-strongly convex. Since ∇ω(x) = x, then the general update step of
the mirror descent method reads as

xk+1 = argminx∈C

{
〈tkf ′(xk)− xk,x〉+ 1

2
‖x‖2

}
,

which is the same as the projected subgradient update step: xk+1 = PC(x
k −

tkf
′(xk)). This is of course not a surprise since the method was constructed as a

generalization of the projected subgradient method.

Example 9.10 (negative entropy over the unit simplex). Suppose that
Assumption 9.1 holds with E = R

n endowed with the l1-norm and C = Δn. We
will take ω to be the negative entropy over the nonnegative orthant:

ω(x) =

⎧⎪⎨⎪⎩
∑n

i=1 xi log xi, x ∈ Rn+,

∞ else.

As usual, we use the convention that 0 log 0 = 0. By Example 5.27, ω + δΔn is
1-strongly convex w.r.t. the l1-norm. In this case,

dom(∂ω) = R
n
++,
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252 Chapter 9. Mirror Descent

on which ω is indeed differentiable. Thus, all the properties of Assumption 9.3
hold. The associated Bregman distance is given for any x ∈ Δn and y ∈ Δ+

n ≡
{x ∈ Rn++ : eTx = 1} by

Bω(x,y) =

n∑
i=1

xi log xi −
n∑
i=1

yi log yi −
n∑
i=1

(log(yi) + 1)(xi − yi)

=

n∑
i=1

xi log(xi/yi) +

n∑
i=1

yi −
n∑
i=1

xi

=

n∑
i=1

xi log(xi/yi), (9.13)

which is the so-called Kullback-Leibler divergence distance measure. The general
update step of the mirror descent method has the form (f ′i(x

k) is the ith component
of f ′(xk)),

xk+1 = argminx∈Δn

{
n∑
i=1

(tkf
′
i(x

k)− 1− log(xki ))xi +

n∑
i=1

xi log xi

}
. (9.14)

By Example 3.71, the optimal solution of problem (9.14) is

xk+1
i =

elog(x
k
i )+1−tkf ′

i (x
k)∑n

j=1 e
log(xk

j )+1−tkf ′
j(x

k)
, i = 1, 2, . . . , n,

which can be simplified into the following:

xk+1
i =

xki e
−tkf ′

i(x
k)∑n

j=1 x
k
j e
−tkf ′

j(x
k)
, i = 1, 2, . . . , n.

The natural question that arises is how to choose the stepsizes. The conver-
gence analysis that will be developed in the next section will reveal some possible
answers to this question.

9.2 Convergence Analysis

9.2.1 The Toolbox

The following identity, also known as the three-points lemma, is essential in the
analysis of the mirror descent lemma.

Lemma 9.11 (three-points lemma).50 Suppose that ω : E → (−∞,∞] is proper
closed and convex. Suppose in addition that ω is differentiable over dom(∂ω). As-
sume that a,b ∈ dom(∂ω) and c ∈ dom(ω). Then the following equality holds:

〈∇ω(b)− ∇ω(a), c − a〉 = Bω(c, a) +Bω(a,b) −Bω(c,b).

50The three-points lemma was proven by Chen and Teboulle in [43].
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9.2. Convergence Analysis 253

Proof. By definition of Bω,

Bω(c, a) = ω(c)− ω(a)− 〈∇ω(a), c − a〉,
Bω(a,b) = ω(a)− ω(b)− 〈∇ω(b), a − b〉,
Bω(c,b) = ω(c)− ω(b)− 〈∇ω(b), c − b〉.

Hence,

Bω(c, a) +Bω(a,b)−Bω(c,b) = −〈∇ω(a), c− a〉 − 〈∇ω(b), a− b〉+ 〈∇ω(b), c− b〉
= 〈∇ω(b)− ∇ω(a), c − a〉.

Another key lemma is an extension of the second prox theorem (Theorem
6.39) to the case of non-Euclidean distances.

Theorem 9.12 (non-Euclidean second prox theorem). Let

• ω : E → (−∞,∞] be a proper closed and convex function differentiable over
dom(∂ω);

• ψ : E → (−∞,∞] be a proper closed and convex function satisfying dom(ψ) ⊆
dom(ω);

• ω + δdom(ψ) be σ-strongly convex (σ > 0).

Assume that b ∈ dom(∂ω), and let a be defined by

a = argminx∈E {ψ(x) +Bω(x,b)} . (9.15)

Then a ∈ dom(∂ω) and for all u ∈ dom(ψ),

〈∇ω(b)− ∇ω(a),u− a〉 ≤ ψ(u)− ψ(a). (9.16)

Proof. Using the definition of Bω, (9.15) can be rewritten as

a = argminx∈E {ψ(x)− 〈∇ω(b),x〉 + ω(x)} . (9.17)

The fact that a ∈ dom(∂ω) follows by invoking Lemma 9.7 with ψ(x)− 〈∇ω(b),x〉
taking the role of ψ(x). Using Fermat’s optimality condition (Theorem 3.63), it
follows by (9.17) that there exists ψ′(a) ∈ ∂ψ(a) for which

ψ′(a) +∇ω(a)− ∇ω(b) = 0.

Hence, by the subgradient inequality, for any u ∈ dom(ψ),

〈∇ω(b)− ∇ω(a),u− a〉 = 〈ψ′(a),u − a〉 ≤ ψ(u)− ψ(a),

proving the desired result.

Using the non-Euclidean second prox theorem and the three-points lemma,
we can now establish a fundamental inequality satisfied by the sequence generated
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254 Chapter 9. Mirror Descent

by the mirror descent method. The inequality can be seen as a generalization of
Lemma 8.11.

Lemma 9.13 (fundamental inequality for mirror descent). Suppose that
Assumptions 9.1 and 9.3 hold. Let {xk}k≥0 be the sequence generated by the mirror
descent method with positive stepsizes {tk}k≥0. Then for any x∗ ∈ X∗ and k ≥ 0,

tk(f(x
k)− fopt) ≤ Bω(x

∗,xk)−Bω(x
∗,xk+1) +

t2k
2σ

‖f ′(xk)‖2∗.

Proof. By the update formula (9.7) for xk+1 and the non-Euclidean second prox
theorem (Theorem 9.12) invoked with b = xk and ψ(x) ≡ tk〈f ′(xk),x〉 + δC(x)
(and hence a = xk+1), we have for any u ∈ C,

〈∇ω(xk)− ∇ω(xk+1),u− xk+1〉 ≤ tk〈f ′(xk),u− xk+1〉. (9.18)

By the three-points lemma (with a = xk+1,b = xk, and c = u),

〈∇ω(xk)− ∇ω(xk+1),u− xk+1〉 = Bω(u,x
k+1) +Bω(x

k+1,xk)−Bω(u,x
k),

which, combined with (9.18), gives

Bω(u,x
k+1) +Bω(x

k+1,xk)−Bω(u,x
k) ≤ tk〈f ′(xk),u− xk+1〉.

Therefore,

tk〈f ′(xk),xk − u〉
≤ Bω(u,x

k)−Bω(u,x
k+1)−Bω(x

k+1,xk) + tk〈f ′(xk),xk − xk+1〉
(∗)
≤ Bω(u,x

k)−Bω(u,x
k+1)− σ

2
‖xk+1 − xk‖2 + tk〈f ′(xk),xk − xk+1〉

= Bω(u,x
k)−Bω(u,x

k+1)− σ

2
‖xk+1 − xk‖2 +

〈
tk√
σ
f ′(xk),

√
σ(xk − xk+1)

〉
(∗∗)
≤ Bω(u,x

k)− Bω(u,x
k+1)− σ

2
‖xk+1 − xk‖2 + t2k

2σ
‖f ′(xk)‖2∗ +

σ

2
‖xk+1 − xk‖2

= Bω(u,x
k)−Bω(u,x

k+1) +
t2k
2σ

‖f ′(xk)‖2∗,

where the inequality (∗) follows by Lemma 9.4(a) and (∗∗) by Fenchel’s inequality
(Theorem 4.6) employed on the function 1

2‖x‖2 (whose conjugate is 1
2‖y‖2∗—see

Section 4.4.15). Plugging in u = x∗ and using the subgradient inequality, we obtain

tk(f(x
k)− fopt) ≤ Bω(x

∗,xk)−Bω(x
∗,xk+1) +

t2k
2σ

‖f ′(xk)‖2∗.

Under a boundedness assumption on Bω(x,x
0) over C, we can deduce a useful

bound on the sequence of best achieved function values defined by

fkbest ≡ min
n=0,1,...,k

f(xn). (9.19)

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



9.2. Convergence Analysis 255

Lemma 9.14. Suppose that Assumptions 9.1 and 9.3 hold and that ‖f ′(x)‖∗ ≤ Lf
for all x ∈ C, where Lf > 0. Suppose that Bω(x,x

0) is bounded over C, and let
Θ(x0) satisfy

Θ(x0) ≥ max
x∈C

Bω(x,x
0).

Let {xk}k≥0 be the sequence generated by the mirror descent method with positive
stepsizes {tk}k≥0. Then for any N ≥ 0,

fNbest − fopt ≤
Θ(x0) +

L2
f

2σ

∑N
k=0 t

2
k∑N

k=0 tk
, (9.20)

where fNbest is defined in (9.19).

Proof. Let x∗ ∈ X∗. By Lemma 9.13 it follows that for any k ≥ 0,

tk(f(x
k)− fopt) ≤ Bω(x

∗,xk)−Bω(x
∗,xk+1) +

t2k
2σ

‖f ′(xk)‖2∗. (9.21)

Summing (9.21) over k = 0, 1, . . . , N , we obtain

N∑
k=0

tk(f(x
k)− fopt) ≤ Bω(x

∗,x0)−Bω(x
∗,xN+1) +

N∑
k=0

t2k
2σ

‖f ′(xk)‖2∗

= Θ(x0) +
L2
f

2σ

N∑
k=0

t2k,

which, combined with the inequality (
∑n

k=0 tk)(f
N
best − fopt) ≤

∑N
k=0 tk(f(x

k) −
fopt), yields the result (9.20).

9.2.2 Fixed Number of Iterations

Let us begin by fixing the number of iterations N and deduce what the “optimal”
stepsizes are in the sense that they bring the right-hand side of (9.20) to a minimum.
For that, we will prove the following technical lemma.

Lemma 9.15. The optimal solution of the problem

min
t1,...,tm>0

α+ β
∑m

k=1 t
2
k∑m

k=1 tk
, (9.22)

where α, β > 0, is given by tk =
√

α
βm , k = 1, 2, . . . ,m. The optimal value is 2

√
αβ
m .

Proof. Denote the objective function of (9.22) by

φ(t) ≡ α+ β
∑m
k=1 t

2
k∑m

k=1 tk
.
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256 Chapter 9. Mirror Descent

Note that φ is a permutation symmetric function, meaning that φ(t) = φ(Pt) for
any permutation matrix P ∈ Λm. A consequence of this observation is that if
problem (9.22) has an optimal solution, then it necessarily has an optimal solution
in which all the variables are the same. To show this, take an arbitrary optimal
solution t∗ and a permutation matrix P ∈ Λm. Since φ(Pt∗) = φ(t∗), it follows
that Pt∗ is also an optimal solution of (9.22). Therefore, since φ is convex over the
positive orthant,51 it follows that

1

m!

∑
P∈Λm

Pt∗ =
1

m

⎛⎜⎜⎜⎜⎝
eT t

...

eT t

⎞⎟⎟⎟⎟⎠
is also an optimal solution, showing that there always exists an optimal solution
with equal components. Problem (9.22) therefore reduces to (after substituting
t1 = t2 = · · · = tm = t)

min
t>0

α+ βmt2

mt
,

whose optimal solution is t =
√

α
βm , and thus an optimal solution of problem (9.22)

is given by tk =
√

α
βm , k = 1, 2, . . . ,m. Substituting this value into φ, we obtain

that the optimal value is 2
√

αβ
m .

Using Lemma 9.15 with α = Θ(x0), β =
L2

f

2σ and m = N +1, we conclude that

the minimum of the right-hand side of (9.20) is attained at tk =

√
2Θ(x0)σ

Lf

√
N+1

. The

O(1/
√
N) rate of convergence follows immediately.

Theorem 9.16 (O(1/
√
N) rate of convergence of mirror descent with

fixed amount of iterations). Suppose that Assumptions 9.1 and 9.3 hold and
that ‖f ′(x)‖∗ ≤ Lf for all x ∈ C for some Lf > 0. Assume that Bω(x,x

0) is
bounded over C, and let Θ(x0) satisfy

Θ(x0) ≥ max
x∈C

Bω(x,x
0).

Let N be a positive integer, and let {xk}k≥0 be the sequence generated by the mirror
descent method with

tk =

√
2Θ(x0)σ

Lf
√
N + 1

, k = 0, 1, . . . , N. (9.23)

Then

fNbest − fopt ≤
√
2Θ(x0)Lf√
σ
√
N + 1

,

where fNbest is defined in (9.19).

51See, for example, [10, Example 7.18].
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9.2. Convergence Analysis 257

Proof. By Lemma 9.14,

fNbest − fopt ≤
Θ(x0) +

L2
f

2σ

∑N
k=0 t

2
k∑N

k=0 tk
.

Plugging the expression (9.23) for the stepsizes into the above inequality, the result
follows.

Example 9.17 (optimization over the unit simplex). Consider the problem

min{f(x) : x ∈ Δn},

where f : Rn → (−∞,∞] is proper closed convex and satisfies Δn ⊆ int(dom(f)).
Consider two possible algorithms.

• Euclidean setting. We assume that the underlying norm on Rn is the l2-
norm and ω(x) = 1

2‖x‖22, which is 1-strongly convex w.r.t. the l2-norm. In this
case, the mirror descent algorithm is the same as the projected subgradient
method:

xk+1 = PΔn(x
k − tkf

′(xk)).

We will assume that the method starts with the vector x0 = 1
ne. For this

choice,

max
x∈Δn

Bω(x,x
0) = max

x∈Δn

1

2

∥∥∥∥x− 1

n
e

∥∥∥∥2
2

=
1

2

(
1− 1

n

)
,

and we will take Θ(x0) = 1. By Theorem 9.16, we have that given a positive
integer N , by appropriately choosing the stepsizes, we obtain that

fNbest − fopt ≤
√
2Lf,2√
N + 1︸ ︷︷ ︸
Cf

e

, (9.24)

where Lf,2 = maxx∈Δn ‖f ′(x)‖2.

• Non-Euclidean setting. Here we assume that the underlying norm on Rn is
the l1-norm and that the convex function ω is chosen as the negative entropy
function

ω(x) =

⎧⎪⎨⎪⎩
∑n
i=1 xi log(xi), x ∈ R

n
++,

∞ else.
(9.25)

By Example 5.27, ω+δΔn is 1-strongly convex w.r.t. the l1-norm. By Example
9.10, the mirror descent method takes the form

xk+1
i =

xki e
−tkf ′

i (x
k)∑n

j=1 x
k
j e
−tkf ′

j(x
k)
, i = 1, 2, . . . , n.
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258 Chapter 9. Mirror Descent

As in the Euclidean setting, we will also initialize the method with x0 = 1
ne.

For this choice, using the fact that the Bregman distance coincides with the
Kullback–Leibler divergence (see (9.13)), we obtain

max
x∈Δn

Bω

(
x,

1

n
e

)
= max

x∈Δn

n∑
i=1

xi log(nxi) = log(n) + max
x∈Δn

n∑
i=1

xi log xi

= log(n).

We will thus take Θ(x0) = log(n). By Theorem 9.16, we have that given a
positive integer N , by appropriately choosing the stepsizes, we obtain that

fNbest − fopt ≤
√
2 log(n)Lf,∞√

N + 1︸ ︷︷ ︸
Cf

ne

, (9.26)

where Lf,∞ = maxx∈Δn ‖f ′(x)‖∞.

The ratio of the two upper bounds in (9.24) and (9.26) is given by

ρf =
Cfne

Cfe
=
√
log(n)

Lf,∞
Lf,2

.

Whether or not ρf is greater than 1 (superiority of the Euclidean setting) or smaller
than 1 (superiority of the non-Euclidean setting) depends on the properties of the
function f . In any case, since ‖y‖∞ ≤ ‖y‖2 ≤

√
n‖y‖∞ for all y ∈ Rn, it follows

that
1√
n

≤ Lf,∞
Lf,2

≤ 1,

and hence that √
log(n)√
n

≤ ρf ≤
√
log(n).

Therefore, the ratio between the efficiency estimates ranges between

√
log(n)√
n

(superi-

ority of the non-Euclidean setting) and
√
log(n) (slight superiority of the Euclidean

setting).

9.2.3 Dynamic Stepsize Rule

The constant stepsize rule is relatively easy to analyze but has the disadvantage of
requiring the a priori knowledge of the total number of iterations employed by the
method. In practical situations, the number of iterations is not fixed a priori, and a
stopping criteria different than merely fixing the total number of iterations is usually
imposed. This is why dynamic (namely, nonconstant) stepsize rules are important.
Similarly to the analysis in Chapter 8 for the projected subgradient method, it is
possible to use the fundamental inequality for the mirror descent method (Lemma
9.13) to establish convergence results under dynamic stepsize rules.

Theorem 9.18 (convergence of mirror descent with dynamic stepsizes).
Suppose that Assumptions 9.1 and 9.3 hold and that ‖f ′(x)‖∗ ≤ Lf for any x ∈ C
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9.2. Convergence Analysis 259

for some Lf > 0. Let {xk}k≥0 be the sequence generated by the mirror descent
method with positive stepsizes {tk}k≥0, and let {fkbest}k≥0 be the sequence of best
achieved values defined in (9.19).

(a) If
∑k

n=0 t
2
n∑

k
n=0 tn

→ 0 as k → ∞, then fkbest → fopt as k → ∞.

(b) If tk is chosen as either (predefined diminishing stepsize)

tk =

√
2σ

Lf
√
k + 1

or (adaptive stepsize)

tk =

⎧⎪⎨⎪⎩
√
2σ

‖f ′(xk)‖∗
√
k+1

, f ′(xk) 
= 0,
√
2σ

Lf

√
k+1

, f ′(xk) = 0,

then for all k ≥ 1,

fkbest − fopt ≤
Lf√
2σ

Bω(x
∗,x0) + 1 + log(k + 1)√

k + 1
.

Proof. By the fundamental inequality for mirror descent (Lemma 9.13), we have,
for all n ≥ 0,

tn(f(x
n)− fopt) ≤ Bω(x

∗,xn)−Bω(x
∗,xn+1) +

t2n
2σ

‖f ′(xn)‖2∗.

Summing the above inequality over n = 0, 1, . . . , k gives

k∑
n=0

tn(f(x
n)− fopt) ≤ Bω(x

∗,x0)−Bω(x
∗,xk+1) +

1

2σ

k∑
n=0

t2n‖f ′(xn)‖2∗.

Using the inequalities Bω(x
∗,xk+1) ≥ 0 and f(xn) ≥ fkbest(n ≤ k), we obtain

fkbest − fopt ≤
Bω(x

∗,x0) + 1
2σ

∑k
n=0 t

2
n‖f ′(xn)‖2∗∑k

n=0 tn
. (9.27)

Since ‖f ′(xn)‖∗ ≤ Lf , we can deduce that

fkbest − fopt ≤
Bω(x

∗,x0) +
L2

f

2σ

∑k
n=0 t

2
n∑k

n=0 tn
.

Therefore, if
∑k

n=0 t
2
n∑k

n=0 tn
→ 0, then fkbest → fopt as k → ∞, proving claim (a).

To show the validity of claim (b), note that for both stepsize rules we have

t2n‖f ′(xn)‖2∗ ≤ 2σ
n+1 and tn ≥

√
2σ

Lf

√
n+1

. Hence, by (9.27),

fkbest − fopt ≤
Lf√
2σ

Bω(x
∗,x0) +

∑k
n=0

1
n+1∑k

n=0
1√
n+1

,

which, combined with Lemma 8.27(a), yields the desired result.
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260 Chapter 9. Mirror Descent

Example 9.19 (mirror descent vs. projected subgradient—numerical ex-
ample). Consider the problem

min {‖Ax− b‖1 : x ∈ Δn} , (9.28)

where A ∈ Rn×n and b ∈ Rn. Following Example 9.17, we consider two methods.
The first is the projected subgradient method where Rn is assumed to be endowed
with the Euclidean l2-norm. The update formula is given by

xk+1 = PΔn(x
k − tkf

′(xk)),

with f ′(xk) taken as AT sgn(Axk − b) and the stepsize tk chosen by the adaptive
stepsize rule (in practice, f ′(xk) is never the zeros vector):

tk =

√
2

‖f ′(xk)‖2
√
k + 1

.

The second method is mirror descent in which the underlying norm on R
n is the

l1-norm and ω is chosen to be the negative entropy function given in (9.25). In this
case, the method has the form (see Example 9.17)

xk+1
i =

xki e
−tkf ′

i(x
k)∑n

j=1 x
k
j e
−tkf ′

j(x
k)
, i = 1, 2, . . . , n,

where here we take

tk =

√
2

‖f ′(xk)‖∞
√
k + 1

.

Note that the strong convexity parameter is σ = 1 in both settings. We created
an instance of problem (9.28) with n = 100 by generating the components of A
and b independently via a standard normal distribution. The values of f(xk) −
fopt and fkbest − fopt for both methods are described in Figure 9.1. Evidently, the
non-Euclidean method, referred to as md, is superior to the Euclidean projected
subgradient method (ps).

9.3 Mirror Descent for the Composite Model
52

In this section we will consider a more general model than model (9.1), which was
discussed in Sections 9.1 and 9.2. Consider the problem

min
x∈E

{F (x) ≡ f(x) + g(x)}, (9.29)

where the following set of assumptions is made on f and g.

Assumption 9.20 (properties of f and g).

(A) f, g : E → (−∞,∞] are proper closed and convex.

(B) dom(g) ⊆ int(dom(f)).

52The analysis of the mirror-C method is based on the work of Duchi, Shalev-Shwartz, Singer,
and Tewari [49], where the algorithm is introduced in an online and stochastic setting.
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9.3. Mirror Descent for the Composite Model 261
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Figure 9.1. The values f(xk) − fopt and fkbest − fopt generated by the
mirror descent and projected subgradient methods.

(C) ‖f ′(x)‖∗ ≤ Lf for any x ∈ dom(g) (Lf > 0).53

(D) The optimal set of (9.29) is nonempty and denoted by X∗. The optimal value
of the problem is denoted by Fopt.

We will also assume, as usual, that we have at our disposal a convex function ω
that satisfies the following properties, which are a slight adjustment of the properties
in Assumption 9.3.

Assumption 9.21 (properties of ω).

• ω is proper closed and convex.

• ω is differentiable over dom(∂ω).

• dom(g) ⊆ dom(ω).

• ω + δdom(g) is σ-strongly convex (σ > 0).

We can obviously ignore the composite structure of problem (9.29) and just
try to employ the mirror descent method on the function F = f + g with dom(g)
taking the role of C:

xk+1 = argminx∈C

{
〈f ′(xk) + g′(xk),x〉 + 1

tk
Bω(x,x

k)

}
. (9.30)

53Recall that we assume that f ′ represents some rule that takes any x ∈ dom(∂f) to a vector
f ′(x) ∈ ∂f(x).
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262 Chapter 9. Mirror Descent

However, employing the above scheme might be problematic. First, we did not
assume that C = dom(g) is closed, and thus the argmin in (9.30) might be empty.
Second, even if the update step is well defined, we did not assume that g is Lip-
schitz over C like we did on f in Assumption 9.20(C); this is a key element in the
convergence analysis of the mirror descent method. Finally, even if g is Lipschitz
over C, it might be that the Lipschitz constant of the sum function F = f + g is
much larger than the Lipschitz constant of f , and our objective will be to define a
method whose efficiency estimate will depend only on the Lipschitz constant of f
over dom(g).

Instead of linearizing both f and g, as is done in (9.30), we will linearize f
and keep g as it is. This leads to the following scheme:

xk+1 = argminx

{
〈f ′(xk),x〉+ g(x) +

1

tk
Bω(x,x

k)

}
, (9.31)

which can also be written as

xk+1 = argminx
{
〈tkf ′(xk)− ∇ω(xk),x〉 + tkg(x) + ω(x)

}
.

The algorithm that performs the above update step will be called the mirror-C
method.

The Mirror-C Method

Initialization: pick x0 ∈ dom(g) ∩ dom(∂ω).
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick a stepsize tk > 0 and a subgradient f ′(xk) ∈ ∂f(xk);

(b) set

xk+1 = argminx
{
〈tkf ′(xk)− ∇ω(xk),x〉+ tkg(x) + ω(x)

}
. (9.32)

Remark 9.22. The update formula (9.32) can also be rewritten as

xk+1 = argminx
{
〈tkf ′(xk),x〉 + tkg(x) +Bω(x,x

k)
}
. (9.33)

Remark 9.23 (Euclidean setting—proximal subgradient method). When
the underlying space E is Euclidean and ω(x) = 1

2‖x‖2, then the update formula
(9.33) reduces to

xk+1 = argminx

{
〈tkf ′(xk),x〉+ tkg(x) +

1

2
‖x− xk‖2

}
,

which, after some rearrangement of terms and removal of constant terms, takes the
form

xk+1 = argminx

{
tkg(x) +

1

2

∥∥x− [xk − tkf
′(xk)]

∥∥2} .
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9.3. Mirror Descent for the Composite Model 263

By the definition of the prox operator (see Chapter 6), the last equation can be
rewritten as

xk+1 = proxtkg(x
k − tkf

′(xk)).

Thus, at each iteration the method takes a step toward minus of the subgradient
followed by a prox step. The resulting method is called the proximal subgradient
method. The method will be discussed extensively in Chapter 10 in the case where
f possesses some differentiability properties.

Of course, the mirror-C method coincides with the mirror descent method
when taking g = δC with C being a nonempty closed and convex set. We begin by
showing that the mirror-C method is well defined, meaning that the minimum in
(9.32) is uniquely attained at dom(g) ∩ dom(∂ω).

Theorem 9.24 (mirror-C is well defined). Suppose that Assumptions 9.20 and
9.21 hold. Let a ∈ E∗. Then the problem

min
x∈E

{〈a,x〉 + g(x) + ω(x)}

has a unique minimizer in dom(g) ∩ dom(∂ω).

Proof. The proof follows by invoking Lemma 9.7 with ψ(x) ≡ 〈a,x〉+ g(x).

The analysis of the mirror-C method is based on arguments similar to those
used in Section 9.2 to analyze the mirror descent method. We begin by proving a
technical lemma establishing an inequality similar to the one derived in Lemma 9.14.
Note that in addition to our basic assumptions, we assume that g is a nonnegative
function and that the stepsizes are nonincreasing.

Lemma 9.25. Suppose that Assumptions 9.20 and 9.21 hold and that g is a non-
negative function. Let {xk}k≥0 be the sequence generated by the mirror-C method
with positive nonincreasing stepsizes {tk}k≥0. Then for any x∗ ∈ X∗ and k ≥ 0,

min
n=0,1,...,k

F (xn)− Fopt ≤
t0g(x

0) +Bω(x
∗,x0) + 1

2σ

∑k
n=0 t

2
n‖f ′(xn)‖2∗∑k

n=0 tn
. (9.34)

Proof. By the update formula (9.33) and the non-Euclidean second prox theorem
(Theorem 9.12) invoked with b = xn, a = xn+1, and ψ(x) ≡ tn〈f ′(xn),x〉+ tng(x),
we have

〈∇ω(xn)−∇ω(xn+1),u−xn+1〉 ≤ tn〈f ′(xn),u−xn+1〉+tng(u)−tng(xn+1). (9.35)

Invoking the three-points lemma (Lemma 9.11) with a = xn+1,b = xn, and c = u
yields

〈∇ω(xn)− ∇ω(xn+1),u− xn+1〉 = Bω(u,x
n+1) +Bω(x

n+1,xn)−Bω(u,x
n),

which, combined with (9.35), gives

Bω(u,x
n+1)+Bω(x

n+1,xn)−Bω(u,xn) ≤ tn〈f ′(xn),u−xn+1〉+tng(u)−tng(xn+1).
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264 Chapter 9. Mirror Descent

Therefore,

tn〈f ′(xn),xn − u〉+ tng(x
n+1)− tng(u)

≤ Bω(u,x
n)−Bω(u,x

n+1)−Bω(x
n+1,xn) + tn〈f ′(xn),xn − xn+1〉

≤ Bω(u,x
n)−Bω(u,x

n+1)− σ

2
‖xn+1 − xn‖2 + tn〈f ′(xn),xn − xn+1〉

= Bω(u,x
n)−Bω(u,x

n+1)− σ

2
‖xn+1 − xn‖2 +

〈
tn√
σ
f ′(xn),

√
σ(xn − xn+1)

〉
≤ Bω(u,x

n)−Bω(u,x
n+1)− σ

2
‖xn+1 − xn‖2 + t2n

2σ
‖f ′(xn)‖2∗ +

σ

2
‖xn+1 − xn‖2

= Bω(u,x
n)−Bω(u,x

n+1) +
t2n
2σ

‖f ′(xn)‖2∗.

Plugging in u = x∗ and using the subgradient inequality, we obtain

tn
[
f(xn) + g(xn+1)− Fopt

]
≤ Bω(x

∗,xn)−Bω(x
∗,xn+1) +

t2n
2σ

‖f ′(xn)‖2∗.

Summing the above over n = 0, 1, . . . , k,

k∑
n=0

tn
[
f(xn) + g(xn+1)− Fopt

]
≤ Bω(x

∗,x0)−Bω(x∗,xk+1)+
1

2σ

k∑
n=0

t2n‖f ′(xn)‖2∗.

Adding the term t0g(x
0) − tkg(x

k+1) to both sides and using the nonnegativity of
the Bregman distance, we get

t0(F (x
0)− Fopt) +

k∑
n=1

[tnf(x
n) + tn−1g(x

n)− tnFopt]

≤ t0g(x
0)− tkg(x

k+1) +Bω(x
∗,x0) +

1

2σ

k∑
n=0

t2n‖f ′(xn)‖2∗.

Using the fact that tn ≤ tn−1 and the nonnegativity of g(xk+1), we conclude that

k∑
n=0

tn [F (x
n)− Fopt] ≤ t0g(x

0) +Bω(x
∗,x0) +

1

2σ

k∑
n=0

t2n‖f ′(xn)‖2∗,

which, combined with the fact that(
k∑

n=0

tn

)(
min

n=0,1,...,k
F (xn)− Fopt

)
≤

k∑
n=0

tn [F (x
n)− Fopt] ,

implies the inequality (9.34).

Using Lemma 9.25, it is now easy to derive a convergence result under the
assumption that the number of iterations is fixed.

Theorem 9.26 (O(1/
√
N) rate of convergence of mirror-C with fixed

amount of iterations). Suppose that Assumptions 9.20 and 9.21 hold and that
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9.3. Mirror Descent for the Composite Model 265

g is nonnegative. Assume that Bω(x,x
0) is bounded above over dom(g), and let

Θ(x0) satisfy
Θ(x0) ≥ max

x∈dom(g)
B(x,x0).

Suppose that g(x0) = 0. Let N be a positive integer, and let {xk}k≥0 be the sequence
generated by the mirror-C method with constant stepsize

tk =

√
2Θ(x0)σ

Lf
√
N

. (9.36)

Then

min
n=0,1,...,N−1

F (xn)− Fopt ≤
√
2Θ(x0)Lf√
σ
√
N

.

Proof. By Lemma 9.25, using the fact that g(x0) = 0 and the inequalities
‖f ′(xn)‖∗ ≤ Lf and Bω(x

∗,x0) ≤ Θ(x0), we have

min
n=0,1,...,N−1

F (xn)− Fopt ≤
Θ(x0) +

L2
f

2σ

∑N−1
n=0 t

2
n∑N−1

n=0 tn
.

Plugging the expression (9.36) for the stepsizes into the above inequality, the result
follows.

We can also establish a rate of convergence of the mirror-C method with a
dynamic stepsize rule.

Theorem 9.27 (O(log k/
√
k) rate of convergence of mirror-C with dy-

namic stepsizes). Suppose that Assumptions 9.20 and 9.21 hold and that g is
nonnegative. Let {xk}k≥0 be the sequence generated by the mirror-C method with
stepsizes {tk}k≥0 chosen as

tk =

√
2σ

Lf
√
k + 1

.

Then for all k ≥ 1,

min
n=0,1,...,k

F (xn)− Fopt ≤
Lf√
2σ

Bω(x
∗,x0) +

√
2σ
Lf

g(x0) + 1 + log(k + 1)
√
k + 1

. (9.37)

Proof. By Lemma 9.25, taking into account the fact that t0 =
√
2σ
Lf

,

min
n=0,1,...,k

F (xn)− Fopt ≤
Bω(x

∗,x0) +
√
2σ
Lf

g(x0) + 1
2σ

∑k
n=0 t

2
n‖f ′(xn)‖2∗∑k

n=0 tn
, (9.38)

which, along with the relations t2n‖f ′(xn)‖2∗ ≤ 2σ
n+1 and tn =

√
2σ

Lf

√
n+1

, yields the

inequality

min
n=0,1,...,k

F (xn)− fopt ≤
Lf√
2σ

Bω(x
∗,x0) +

√
2σ
Lf

g(x0) +
∑k
n=0

1
n+1∑k

n=0
1√
n+1

.

The result (9.37) now follows by invoking Lemma 8.27(a).
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266 Chapter 9. Mirror Descent

Example 9.28. Suppose that the underlying space is Rn endowed with the Eu-
clidean l2-norm. Let f : Rn → R be a convex function, which is Lipschitz over Rn,
implying that there exists Lf > 0 for which ‖f ′(x)‖2 ≤ Lf for all x ∈ Rn. Now
consider the problem

min
x∈Rn

++

{
F (x) ≡ f(x) +

n∑
i=1

1

xi

}

with ω chosen as ω(x) = 1
2‖x‖22. In this case, the mirror descent and mirror-C

methods coincide with the projected subgradient and proximal subgradient meth-
ods, respectively. It is not possible to employ the projected subgradient method
on the problem—it is not even clear what is the feasible set C. If we take it as
the open set Rn++, then projections onto C will in general not be in C. In any
case, since F is obviously not Lipschitz, no convergence is guaranteed. On the
other hand, employing the proximal subgradient method is definitely possible by
taking g(x) ≡

∑n
i=1

1
xi

+ δRn
++

. Both Assumptions 9.20 and 9.21 hold for f, g and

ω(x) = 1
2‖x‖2, and in addition g is nonnegative. The resulting method is

xk+1 = proxtkg
(
xk − tkf

′(xk)
)
.

The computation of proxtkg amounts to solving n cubic scalar equations.

Example 9.29 (projected subgradient vs. proximal subgradient). Suppose
that the underlying space is Rn endowed with the Euclidean l2-norm and consider
the problem

min
x∈Rn

{F (x) ≡ ‖Ax− b‖1 + λ‖x‖1} , (9.39)

where A ∈ R
m×n,b ∈ R

m, and λ > 0. We will consider two possible methods to
solve the problem:

• projected subgradient employed on problem (9.39), where here C = Rn.
The method takes the form (when making the choice of the subgradient of
‖y‖1 as sgn(y))

xk+1 = xk − tk(A
T sgn(Axk − b) + λsgn(x)).

The stepsize is chosen according to Theorem 8.28 as tk = 1
‖F ′(xk)‖2

√
k+1

.

• proximal subgradient, where we take f(x) = ‖Ax−b‖1 and g(x) = λ‖x‖1,
so that F = f + g. The method then takes the form

xk+1 = proxskg(x
k − skA

T sgn(Axk − b)).

Since g(x) = λ‖x‖1, it follows that proxskg is a soft thresholding operator.
Specifically, by Example 6.8, proxskg = Tλsk , and hence the general update
rule becomes

xk+1 = Tλsk(xk − skA
T sgn(Axk − b)).

The stepsize is chosen as sk = 1
‖f ′(xk)‖2

√
k+1

.
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9.3. Mirror Descent for the Composite Model 267

A priori it seems that the proximal subgradient method should have an advantage
over the projected subgradient method since the efficiency estimate bound of the
proximal subgradient method depends on Lf , while the corresponding constant
for the projected subgradient method depends on the larger constant LF . This
observation is also quite apparent in practice. We created an instance of problem
(9.39) with m = 10, n = 15 by generating the components of A and b independently
via a standard normal distribution. The values of F (xk)−Fopt for both methods are
described in Figure 9.2. Evidently, in this case, the proximal subgradient method
is better by orders of magnitude than the projected subgradient method.
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k )
F
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Figure 9.2. First 1000 iterations of the projected and proximal subgradient
methods employed on problem (9.39). The y-axis describes (in log scale) the quantity
F (xk)− Fopt.
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Chapter 10

The Proximal Gradient
Method

Underlying Space: In this chapter, with the exception of Section 10.9, E is
a Euclidean space, meaning a finite dimensional space endowed with an inner
product 〈·, ·〉 and the Euclidean norm ‖ · ‖ =

√
〈·, ·〉.

10.1 The Composite Model
In this chapter we will be mostly concerned with the composite model

min
x∈E

{F (x) ≡ f(x) + g(x)}, (10.1)

where we assume the following.

Assumption 10.1.

(A) g : E → (−∞,∞] is proper closed and convex.

(B) f : E → (−∞,∞] is proper and closed, dom(f) is convex, dom(g) ⊆ int(dom(f)),
and f is Lf -smooth over int(dom(f)).

(C) The optimal set of problem (10.1) is nonempty and denoted by X∗. The opti-
mal value of the problem is denoted by Fopt.

Three special cases of the general model (10.1) are gathered in the following exam-
ple.

Example 10.2. stam

• Smooth unconstrained minimization. If g ≡ 0 and dom(f) = E, then
(10.1) reduces to the unconstrained smooth minimization problem

min
x∈E

f(x),

where f : E → R is an Lf -smooth function.

269
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270 Chapter 10. The Proximal Gradient Method

• Convex constrained smooth minimization. If g = δC , where C is a
nonempty closed and convex set, then (10.1) amounts to the problem of min-
imizing a differentiable function over a nonempty closed and convex set:

min
x∈C

f(x),

where here f is Lf -smooth over int(dom(f)) and C ⊆ int(dom(f)).

• l1-regularized minimization. Taking g(x) = λ‖x‖1 for some λ > 0, (10.1)
amounts to the l1-regularized problem

min
x∈E

{f(x) + λ‖x‖1}

with f being an Lf -smooth function over the entire space E.

10.2 The Proximal Gradient Method

To understand the idea behind the method for solving (10.1) we are about to study,
we begin by revisiting the projected gradient method for solving (10.1) in the case
where g = δC with C being a nonempty closed and convex set. In this case, the
problem takes the form

min{f(x) : x ∈ C}. (10.2)

The general update step of the projected gradient method for solving (10.2) takes
the form

xk+1 = PC(x
k − tk∇f(xk)),

where tk is the stepsize at iteration k. It is easy to verify that the update step
can be also written as (see also Section 9.1 for a similar discussion on the projected
subgradient method)

xk+1 = argminx∈C

{
f(xk) + 〈∇f(xk),x− xk〉+ 1

2tk
‖x− xk‖2

}
.

That is, the next iterate is the minimizer over C of the sum of the linearization of
the smooth part around the current iterate plus a quadratic prox term.

Back to the more general model (10.1), it is natural to generalize the above
idea and to define the next iterate as the minimizer of the sum of the linearization
of f around xk, the nonsmooth function g, and a quadratic prox term:

xk+1 = argminx∈E

{
f(xk) + 〈∇f(xk),x− xk〉+ g(x) +

1

2tk
‖x− xk‖2

}
. (10.3)

After some simple algebraic manipulation and cancellation of constant terms, we
obtain that (10.3) can be rewritten as

xk+1 = argminx∈E

{
tkg(x) +

1

2

∥∥x− (xk − tk∇f(xk))
∥∥2} ,

which by the definition of the proximal operator is the same as

xk+1 = proxtkg(x
k − tk∇f(xk)).
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10.2. The Proximal Gradient Method 271

The above method is called the proximal gradient method, as it consists of a gradient
step followed by a proximal mapping. From now on, we will take the stepsizes as
tk = 1

Lk
, leading to the following description of the method.

The Proximal Gradient Method

Initialization: pick x0 ∈ int(dom(f)).
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0;

(b) set xk+1 = prox 1
Lk
g

(
xk − 1

Lk
∇f(xk)

)
.

The general update step of the proximal gradient method can be compactly
written as

xk+1 = T f,gLk
(xk),

where T f,gL : int(dom(f)) → E (L > 0) is the so-called prox-grad operator defined
by

T f,gL (x) ≡ prox 1
L g

(
x− 1

L
∇f(x)

)
.

When the identities of f and g are clear from the context, we will often omit the
superscripts f, g and write TL(·) instead of T f,gL (·).

Later on, we will consider two stepsize strategies, constant and backtracking,
where the meaning of “backtracking” slightly changes under the different settings
that will be considered, and hence several backtracking procedures will be defined.

Example 10.3. The table below presents the explicit update step of the proximal
gradient method when applied to the three particular models discussed in Example
10.2.54 The exact assumptions on the models are described in Example 10.2.

Model Update step Name of method

minx∈E f(x) xk+1 = xk − tk∇f(xk) gradient

minx∈C f(x) xk+1 = PC(x
k − tk∇f(xk)) projected gradient

minx∈E{f(x) + λ‖x‖1} xk+1 = Tλtk(xk − tk∇f(xk)) ISTA

The third method is known as the iterative shrinkage-thresholding algorithm
(ISTA) in the literature, since at each iteration a soft-thresholding operation (also
known as “shrinkage”) is performed.

54Here we use the facts that proxtkg0 = I,proxtkδC = PC and proxtkλ‖·‖1 = Tλtk , where

g0(x) ≡ 0.
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272 Chapter 10. The Proximal Gradient Method

10.3 Analysis of the Proximal Gradient Method—
The Nonconvex Case

55

10.3.1 Sufficient Decrease

To establish the convergence of the proximal gradient method, we will prove a
sufficient decrease lemma for composite functions.

Lemma 10.4 (sufficient decrease lemma). Suppose that f and g satisfy prop-

erties (A) and (B) of Assumption 10.1. Let F = f + g and TL ≡ T f,gL . Then for

any x ∈ int(dom(f)) and L ∈
(Lf

2 ,∞
)
the following inequality holds:

F (x) − F (TL(x)) ≥
L− Lf

2

L2

∥∥∥Gf,gL (x)
∥∥∥2 , (10.4)

where Gf,gL : int(dom(f)) → E is the operator defined by Gf,gL (x) = L(x − TL(x))
for all x ∈ int(dom(f)).

Proof. For the sake of simplicity, we use the shorthand notation x+ = TL(x). By
the descent lemma (Lemma 5.7), we have that

f(x+) ≤ f(x) +
〈
∇f(x),x+ − x

〉
+
Lf
2

‖x− x+‖2. (10.5)

By the second prox theorem (Theorem 6.39), since x+ = prox 1
Lg

(
x− 1

L∇f(x)
)
, we

have 〈
x− 1

L
∇f(x)− x+,x− x+

〉
≤ 1

L
g(x)− 1

L
g(x+),

from which it follows that〈
∇f(x),x+ − x

〉
≤ −L

∥∥x+ − x
∥∥2 + g(x)− g(x+),

which, combined with (10.5), yields

f(x+) + g(x+) ≤ f(x) + g(x) +

(
−L+

Lf
2

)∥∥x+ − x
∥∥2 .

Hence, taking into account the definitions of x+, Gf,gL (x) and the identities F (x) =
f(x) + g(x), F (x+) = f(x+) + g(x+), the desired result follows.

10.3.2 The Gradient Mapping

The operator Gf,gL that appears in the right-hand side of (10.4) is an important
mapping that can be seen as a generalization of the notion of the gradient.

Definition 10.5 (gradient mapping). Suppose that f and g satisfy properties
(A) and (B) of Assumption 10.1. Then the gradient mapping is the operator

55The analysis of the proximal gradient method in Sections 10.3 and 10.4 mostly follows the
presentation of Beck and Teboulle in [18] and [19].
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10.3. Analysis of the Proximal Gradient Method—The Nonconvex Case 273

Gf,gL : int(dom(f)) → E defined by

Gf,gL (x) ≡ L
(
x− T f,gL (x)

)
for any x ∈ int(dom(f)).

When the identities of f and g will be clear from the context, we will use the
notation GL instead of Gf,gL . With the terminology of the gradient mapping, the
update step of the proximal gradient method can be rewritten as

xk+1 = xk − 1

Lk
GLk

(xk).

In the special case where L = Lf , the sufficient decrease inequality (10.4) takes a
simpler form.

Corollary 10.6. Under the setting of Lemma 10.4, the following inequality holds
for any x ∈ int(dom(f)):

F (x)− F (TLf
(x)) ≥ 1

2Lf

∥∥GLf
(x)
∥∥2 .

The next result shows that the gradient mapping is a generalization of the
“usual” gradient operator x �→ ∇f(x) in the sense that they coincide when g ≡ 0
and that, for a general g, the points in which the gradient mapping vanishes are
the stationary points of the problem of minimizing f + g. Recall (see Definition
3.73) that a point x∗ ∈ dom(g) is a stationary point of problem (10.1) if and only if
−∇f(x∗) ∈ ∂g(x∗) and that this condition is a necessary optimality condition for
local optimal points (see Theorem 3.72).

Theorem 10.7. Let f and g satisfy properties (A) and (B) of Assumption 10.1
and let L > 0. Then

(a) Gf,g0L (x) = ∇f(x) for any x ∈ int(dom(f)), where g0(x) ≡ 0;

(b) for x∗ ∈ int(dom(f)), it holds that Gf,gL (x∗) = 0 if and only if x∗ is a sta-
tionary point of problem (10.1).

Proof. (a) Since prox 1
L g0

(y) = y for all y ∈ E, it follows that

Gf,g0L (x) = L(x− T f,g0L (x)) = L

(
x− prox 1

L g0

(
x− 1

L
∇f(x)

))
= L

(
x−

(
x− 1

L
∇f(x)

))
= ∇f(x).

(b) Gf,gL (x∗) = 0 if and only if x∗ = prox 1
Lg

(
x∗ − 1

L∇f(x∗)
)
. By the second

prox theorem (Theorem 6.39), the latter relation holds if and only if

x∗ − 1

L
∇f(x∗)− x∗ ∈ 1

L
∂g(x∗),
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274 Chapter 10. The Proximal Gradient Method

that is, if and only if
−∇f(x∗) ∈ ∂g(x∗),

which is exactly the condition for stationarity.

If in addition f is convex, then stationarity is a necessary and sufficient opti-
mality condition (Theorem 3.72(b)), which leads to the following corollary.

Corollary 10.8 (necessary and sufficient optimality condition under con-
vexity). Let f and g satisfy properties (A) and (B) of Assumption 10.1, and let

L > 0. Suppose that in addition f is convex. Then for x∗ ∈ dom(g), Gf,gL (x∗) = 0
if and only if x∗ is an optimal solution of problem (10.1).

We can think of the quantity ‖GL(x)‖ as an “optimality measure” in the sense
that it is always nonnegative, and equal to zero if and only if x is a stationary point.
The next result establishes important monotonicity properties of ‖GL(x)‖ w.r.t. the
parameter L.

Theorem 10.9 (monotonicity of the gradient mapping). Suppose that f and

g satisfy properties (A) and (B) of Assumption 10.1 and let GL ≡ Gf,gL . Suppose
that L1 ≥ L2 > 0. Then

‖GL1(x)‖ ≥ ‖GL2(x)‖ (10.6)

and
‖GL1(x)‖

L1
≤ ‖GL2(x)‖

L2
(10.7)

for any x ∈ int(dom(f)).

Proof. Recall that by the second prox theorem (Theorem 6.39), for any v,w ∈ E

and L > 0, the following inequality holds:

〈v − prox 1
L g

(v), prox 1
L g

(v) −w〉 ≥ 1

L
g
(
prox 1

L g
(v)
)
− 1

L
g(w).

Plugging L = L1,v = x − 1
L1

∇f(x), and w = prox 1
L2
g

(
x − 1

L2
∇f(x)

)
= TL2(x)

into the last inequality, it follows that〈
x− 1

L1
∇f(x)− TL1(x), TL1(x) − TL2(x)

〉
≥ 1

L1
g(TL1(x))−

1

L1
g(TL2(x))

or〈
1

L1
GL1(x) −

1

L1
∇f(x), 1

L2
GL2(x) −

1

L1
GL1(x)

〉
≥ 1

L1
g(TL1(x))−

1

L1
g(TL2(x)).

Exchanging the roles of L1 and L2 yields the following inequality:〈
1

L2
GL2(x) −

1

L2
∇f(x), 1

L1
GL1(x) −

1

L2
GL2(x)

〉
≥ 1

L2
g(TL2(x))−

1

L2
g(TL1(x)).

Multiplying the first inequality by L1 and the second by L2 and adding them, we
obtain 〈

GL1(x) −GL2(x),
1

L2
GL2(x) −

1

L1
GL1(x)

〉
≥ 0,
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10.3. Analysis of the Proximal Gradient Method—The Nonconvex Case 275

which after some expansion of terms can be seen to be the same as

1

L1
‖GL1(x)‖2 +

1

L2
‖GL2(x)‖2 ≤

(
1

L1
+

1

L2

)
〈GL1(x), GL2(x)〉.

Using the Cauchy–Schwarz inequality, we obtain that

1

L1
‖GL1(x)‖2 +

1

L2
‖GL2(x)‖2 ≤

(
1

L1
+

1

L2

)
‖GL1(x)‖ · ‖GL2(x)‖. (10.8)

Note that if GL2(x) = 0, then by the last inequality, GL1(x) = 0, implying that
in this case the inequalities (10.6) and (10.7) hold trivially. Assume then that

GL2(x) 
= 0 and define t =
‖GL1(x)‖
‖GL2(x)‖

. Then, by (10.8),

1

L1
t2 −

(
1

L1
+

1

L2

)
t+

1

L2
≤ 0.

Since the roots of the quadratic function on the left-hand side of the above inequality
are t = 1, L1

L2
, we obtain that

1 ≤ t ≤ L1

L2
,

showing that

‖GL2(x)‖ ≤ ‖GL1(x)‖ ≤ L1

L2
‖GL2(x)‖.

A straightforward result of the nonexpansivity of the prox operator and the
Lf -smoothness of f over int(dom(f)) is that GL(·) is Lipschitz continuous with
constant 2L+ Lf . Indeed, for any x,y ∈ int(dom(f)),

‖GL(x) −GL(y)‖ = L

∥∥∥∥x− prox 1
L g

(
x− 1

L
∇f(x)

)
− y + prox 1

L g

(
y − 1

L
∇f(y)

)∥∥∥∥
≤ L‖x− y‖+ L

∥∥∥∥prox 1
L g

(
x− 1

L
∇f(x)

)
− prox 1

Lg

(
y − 1

L
∇f(y)

)∥∥∥∥
≤ L‖x− y‖+ L

∥∥∥∥(x− 1

L
∇f(x)

)
−
(
y − 1

L
∇f(y)

)∥∥∥∥
≤ 2L‖x− y‖ + ‖∇f(x)− ∇f(y)‖
≤ (2L+ Lf )‖x− y‖.

In particular, for L = Lf , we obtain the inequality

‖GLf
(x)−GLf

(y)‖ ≤ 3Lf‖x− y‖.

The above discussion is summarized in the following lemma.

Lemma 10.10 (Lipschitz continuity of the gradient mapping). Let f and g

satisfy properties (A) and (B) of Assumption 10.1. Let GL = Gf,gL . Then

(a) ‖GL(x)−GL(y)‖ ≤ (2L+ Lf)‖x− y‖ for any x,y ∈ int(dom(f));

(b) ‖GLf
(x) −GLf

(y)‖ ≤ 3Lf‖x− y‖ for any x,y ∈ int(dom(f)).
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276 Chapter 10. The Proximal Gradient Method

Lemma 10.11 below shows that when f is assumed to be convex and Lf -
smooth over the entire space, then the operator 3

4Lf
GLf

is firmly nonexpansive. A

direct consequence is that GLf
is Lipschitz continuous with constant

4Lf

3 .

Lemma 10.11 (firm nonexpansivity of 3
4Lf

GLf ). Let f be a convex and Lf -

smooth function (Lf > 0), and let g : E → (−∞,∞] be a proper closed and convex
function. Then

(a) the gradient mapping GLf
≡ Gf,gLf

satisfies the relation

〈
GLf

(x)−GLf
(y),x − y

〉
≥ 3

4Lf

∥∥GLf
(x)−GLf

(y)
∥∥2 (10.9)

for any x,y ∈ E;

(b) ‖GLf
(x) −GLf

(y)‖ ≤ 4Lf

3 ‖x− y‖ for any x,y ∈ E.

Proof. Part (b) is a direct consequence of (a) and the Cauchy–Schwarz inequality.
We will therefore prove (a). To simplify the presentation, we will use the notation
L = Lf . By the firm nonexpansivity of the prox operator (Theorem 6.42(a)), it
follows that for any x,y ∈ E,〈

TL (x)− TL (y) ,

(
x− 1

L
∇f (x)

)
−
(
y − 1

L
∇f (y)

)〉
≥ ‖TL (x) − TL (y)‖2 ,

where TL ≡ T f,gL is the prox-grad mapping. Since TL = I − 1
LGL, we obtain that〈(

x− 1

L
GL (x)

)
−
(
y − 1

L
GL (y)

)
,

(
x− 1

L
∇f (x)

)
−
(
y − 1

L
∇f (y)

)〉
≥
∥∥∥∥(x− 1

L
GL (x)

)
−
(
y − 1

L
GL (y)

)∥∥∥∥2 ,
which is the same as〈(

x− 1

L
GL(x)

)
−
(
y − 1

L
GL(y)

)
, (GL(x)− ∇f(x)) − (GL(y) − ∇f(y))

〉
≥ 0.

Therefore,

〈GL(x) −GL(y),x − y〉 ≥ 1

L
‖GL(x)−GL(y)‖2 + 〈∇f(x)− ∇f(y),x − y〉

− 1

L
〈GL(x)−GL(y),∇f(x) − ∇f(y)〉 .

Since f is L-smooth, it follows from Theorem 5.8 (equivalence between (i) and (iv))
that

〈∇f(x)− ∇f(y),x − y〉 ≥ 1

L
‖∇f(x)− ∇f(y)‖2.

Consequently,

L 〈GL(x)−GL(y),x − y〉 ≥ ‖GL(x) −GL(y)‖2 + ‖∇f(x)− ∇f(y)‖2

− 〈GL(x) −GL(y),∇f(x) − ∇f(y)〉 .

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



10.3. Analysis of the Proximal Gradient Method—The Nonconvex Case 277

From the Cauchy–Schwarz inequality we get

L 〈GL(x)−GL(y),x − y〉 ≥ ‖GL(x) −GL(y)‖2 + ‖∇f(x)− ∇f(y)‖2

− ‖GL(x) −GL(y) ‖·‖∇f(x)− ∇f(y)‖ . (10.10)

By denoting α = ‖GL (x)−GL (y)‖ and β = ‖∇f (x)− ∇f (y)‖, the right-hand
side of (10.10) reads as α2 + β2 − αβ and satisfies

α2 + β2 − αβ =
3

4
α2 +

(α
2

− β
)2

≥ 3

4
α2,

which, combined with (10.10), yields the inequality

L 〈GL(x)−GL(y),x − y〉 ≥ 3

4
‖GL(x)−GL(y)‖2 .

Thus, (10.9) holds.

The next result shows a different kind of a monotonicity property of the gra-
dient mapping norm under the setting of Lemma 10.11—the norm of the gradient
mapping does not increase if a prox-grad step is employed on its argument.

Lemma 10.12 (monotonicity of the norm of the gradient mapping w.r.t.
the prox-grad operator).56 Let f be a convex and Lf -smooth function (Lf > 0),
and let g : E → (−∞,∞] be a proper closed and convex function. Then for any
x ∈ E,

‖GLf
(TLf

(x))‖ ≤ ‖GLf
(x)‖,

where GLf
≡ Gf,gLf

and TLf
≡ T f,gLf

.

Proof. Let x ∈ E. We will use the shorthand notation x+ = TLf
(x). By Theorem

5.8 (equivalence between (i) and (iv)), it follows that

‖∇f(x+)− ∇f(x)‖2 ≤ Lf〈∇f(x+)− ∇f(x),x+ − x〉. (10.11)

Denoting a = ∇f(x+)−∇f(x) and b = x+−x, inequality (10.11) can be rewritten
as ‖a‖2 ≤ Lf 〈a,b〉, which is the same as∥∥∥∥a− Lf

2
b

∥∥∥∥2 ≤
L2
f

4
‖b‖2

and as ∥∥∥∥ 1

Lf
a− 1

2
b

∥∥∥∥ ≤ 1

2
‖b‖.

Using the triangle inequality,∥∥∥∥ 1

Lf
a− b

∥∥∥∥ ≤
∥∥∥∥ 1

Lf
a− b+

1

2
b

∥∥∥∥+ 1

2
‖b‖ ≤ ‖b‖.

56Lemma 10.12 is a minor variation of Lemma 2.4 from Necoara and Patrascu [88].
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278 Chapter 10. The Proximal Gradient Method

Plugging the expressions for a and b into the above inequality, we obtain that∥∥∥∥x− 1

Lf
∇f(x) − x+ +

1

Lf
∇f(x+)

∥∥∥∥ ≤ ‖x+ − x‖.

Combining the above inequality with the nonexpansivity of the prox operator (The-
orem 6.42(b)), we finally obtain

‖GLf
(TLf

(x))‖ = ‖GLf
(x+)‖ = Lf‖x+ − TLf

(x+)‖ = Lf‖TLf
(x)− TLf

(x+)‖

= Lf

∥∥∥∥prox 1
Lf
g

(
x− 1

Lf
∇f(x)

)
− prox 1

Lf
g

(
x+ − 1

Lf
∇f(x+)

)∥∥∥∥
≤ Lf

∥∥∥∥x− 1

Lf
∇f(x) − x+ +

1

Lf
∇f(x+)

∥∥∥∥
≤ Lf‖x+ − x‖ = Lf‖TLf

(x)− x‖ = ‖GLf
(x)‖,

which is the desired result.

10.3.3 Convergence of the Proximal Gradient Method—
The Nonconvex Case

We will now analyze the convergence of the proximal gradient method under the
validity of Assumption 10.1. Note that we do not assume at this stage that f
is convex. The two stepsize strategies that will be considered are constant and
backtracking.

• Constant. Lk = L̄ ∈
(
Lf

2 ,∞
)
for all k.

• Backtracking procedure B1. The procedure requires three parame-
ters (s, γ, η), where s > 0, γ ∈ (0, 1), and η > 1. The choice of Lk is done
as follows. First, Lk is set to be equal to the initial guess s. Then, while

F (xk)− F (TLk
(xk)) <

γ

Lk
‖GLk

(xk)‖2,

we set Lk := ηLk. In other words, Lk is chosen as Lk = sηik , where ik
is the smallest nonnegative integer for which the condition

F (xk)− F (Tsηik (x
k)) ≥ γ

sηik
‖Gsηik (xk)‖2

is satisfied.

Remark 10.13. Note that the backtracking procedure is finite under Assumption
10.1. Indeed, plugging x = xk into (10.4), we obtain

F (xk)− F (TL(x
k)) ≥

L− Lf

2

L2

∥∥GL(xk)∥∥2 . (10.12)
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10.3. Analysis of the Proximal Gradient Method—The Nonconvex Case 279

If L ≥ Lf

2(1−γ) , then
L−

Lf
2

L ≥ γ, and hence, by (10.12), the inequality

F (xk)− F (TL(x
k)) ≥ γ

L
‖GL(xk)‖2

holds, implying that the backtracking procedure must end when Lk ≥ Lf

2(1−γ) .

We can also compute an upper bound on Lk: either Lk is equal to s, or the
backtracking procedure is invoked, meaning that Lk

η did not satisfy the backtracking

condition, which by the above discussion implies that Lk

η <
Lf

2(1−γ) , so that Lk <
ηLf

2(1−γ) . To summarize, in the backtracking procedure B1, the parameter Lk satisfies

Lk ≤ max

{
s,

ηLf
2(1− γ)

}
. (10.13)

The convergence of the proximal gradient method in the nonconvex case is
heavily based on the sufficient decrease lemma (Lemma 10.4). We begin with the
following lemma showing that consecutive function values of the sequence generated
by the proximal gradient method decrease by at least a constant times the squared
norm of the gradient mapping.

Lemma 10.14 (sufficient decrease of the proximal gradient method). Sup-
pose that Assumption 10.1 holds. Let {xk}k≥0 be the sequence generated by the
proximal gradient method for solving problem (10.1) with either a constant stepsize

defined by Lk = L̄ ∈
(Lf

2 ,∞
)
or with a stepsize chosen by the backtracking procedure

B1 with parameters (s, γ, η), where s > 0, γ ∈ (0, 1), η > 1. Then for any k ≥ 0,

F (xk)− F (xk+1) ≥M‖Gd(xk)‖2, (10.14)

where

M =

⎧⎪⎪⎨⎪⎪⎩
L̄−Lf

2

(L̄)
2 , constant stepsize,

γ

max
{
s,

ηLf
2(1−γ)

} , backtracking,
(10.15)

and

d =

⎧⎪⎨⎪⎩ L̄, constant stepsize,

s, backtracking.
(10.16)

Proof. The result for the constant stepsize setting follows by plugging L = L̄ and
x = xk into (10.4). As for the case where the backtracking procedure is used, by
its definition we have

F (xk)− F (xk+1) ≥ γ

Lk
‖GLk

(xk)‖2 ≥ γ

max
{
s,

ηLf

2(1−γ)

}‖GLk
(xk)‖2,

where the last inequality follows from the upper bound on Lk given in (10.13).
The result for the case where the backtracking procedure is invoked now follows by
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280 Chapter 10. The Proximal Gradient Method

the monotonicity property of the gradient mapping (Theorem 10.9) along with the
bound Lk ≥ s, which imply the inequality ‖GLk

(xk)‖ ≥ ‖Gs(xk)‖.

We are now ready to prove the convergence of the norm of the gradient map-
ping to zero and that limit points of the sequence generated by the method are
stationary points of problem (10.1).

Theorem 10.15 (convergence of the proximal gradient method—noncon-
vex case). Suppose that Assumption 10.1 holds and let {xk}k≥0 be the sequence
generated by the proximal gradient method for solving problem (10.1) either with a

constant stepsize defined by Lk = L̄ ∈
(Lf

2 ,∞
)
or with a stepsize chosen by the

backtracking procedure B1 with parameters (s, γ, η), where s > 0, γ ∈ (0, 1), and
η > 1. Then

(a) the sequence {F (xk)}k≥0 is nonincreasing. In addition, F (xk+1) < F (xk) if
and only if xk is not a stationary point of (10.1);

(b) Gd(x
k) → 0 as k → ∞, where d is given in (10.16);

(c)

min
n=0,1,...,k

‖Gd(xn)‖ ≤
√
F (x0)− Fopt√
M(k + 1)

, (10.17)

where M is given in (10.15);

(d) all limit points of the sequence {xk}k≥0 are stationary points of problem (10.1).

Proof. (a) By Lemma 10.14 we have that

F (xk)− F (xk+1) ≥M‖Gd(xk)‖2, (10.18)

from which it readily follows that F (xk) ≥ F (xk+1). If xk is not a stationary point
of problem (10.1), then Gd(x

k) 
= 0, and hence, by (10.18), F (xk) > F (xk+1). If
xk is a stationary point of problem (10.1), then GLk

(xk) = 0, from which it follows
that xk+1 = xk − 1

Lk
GLk

(xk) = xk, and consequently F (xk) = F (xk+1).

(b) Since the sequence {F (xk)}k≥0 is nonincreasing and bounded below, it
converges. Thus, in particular, F (xk)− F (xk+1) → 0 as k → ∞, which, combined
with (10.18), implies that ‖Gd(xk)‖ → 0 as k → ∞.

(c) Summing the inequality

F (xn)− F (xn+1) ≥M‖Gd(xn)‖2

over n = 0, 1, . . . , k, we obtain

F (x0)− F (xk+1) ≥ M
k∑

n=0

‖Gd(xn)‖2 ≥ M(k + 1) min
n=0,1,...,k

‖Gd(xn)‖2.

Using the fact that F (xk+1) ≥ Fopt, the inequality (10.17) follows.
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10.4. Analysis of the Proximal Gradient Method—The Convex Case 281

(d) Let x̄ be a limit point of {xk}k≥0. Then there exists a subsequence
{xkj}j≥0 converging to x̄. For any j ≥ 0,

‖Gd(x̄)‖ ≤ ‖Gd(xkj )−Gd(x̄)‖+ ‖Gd(xkj )‖ ≤ (2d+ Lf )‖xkj − x̄‖+ ‖Gd(xkj )‖,
(10.19)

where Lemma 10.10(a) was used in the second inequality. Since the right-hand side
of (10.19) goes to 0 as j → ∞, it follows that Gd(x̄) = 0, which by Theorem 10.7(b)
implies that x̄ is a stationary point of problem (10.1).

10.4 Analysis of the Proximal Gradient Method—
The Convex Case

10.4.1 The Fundamental Prox-Grad Inequality

The analysis of the proximal gradient method in the case where f is convex is based
on the following key inequality (which actually does not assume that f is convex).

Theorem 10.16 (fundamental prox-grad inequality). Suppose that f and g
satisfy properties (A) and (B) of Assumption 10.1. For any x ∈ E, y ∈ int(dom(f))
and L > 0 satisfying

f(TL(y)) ≤ f(y) + 〈∇f(y), TL(y) − y〉 + L

2
‖TL(y) − y‖2, (10.20)

it holds that

F (x)− F (TL(y)) ≥
L

2
‖x− TL(y)‖2 − L

2
‖x− y‖2 + 
f (x,y), (10.21)

where

f(x,y) = f(x)− f(y)− 〈∇f(y),x − y〉.

Proof. Consider the function

ϕ(u) = f(y) + 〈∇f(y),u − y〉+ g(u) +
L

2
‖u− y‖2.

Since ϕ is an L-strongly convex function and TL(y) = argminu∈Eϕ(u), it follows by
Theorem 5.25(b) that

ϕ(x)− ϕ(TL(y)) ≥ L

2
‖x− TL(y)‖2. (10.22)

Note that by (10.20),

ϕ(TL(y)) = f(y) + 〈∇f(y), TL(y)− y〉 + L

2
‖TL(y) − y‖2 + g(TL(y))

≥ f(TL(y)) + g(TL(y)) = F (TL(y)),

and thus (10.22) implies that for any x ∈ E,

ϕ(x) − F (TL(y)) ≥ L

2
‖x− TL(y)‖2.
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282 Chapter 10. The Proximal Gradient Method

Plugging the expression for ϕ(x) into the above inequality, we obtain

f(y) + 〈∇f(y),x − y〉 + g(x) +
L

2
‖x− y‖2 − F (TL(y)) ≥

L

2
‖x− TL(y)‖2,

which is the same as the desired result:

F (x)− F (TL(y)) ≥ L

2
‖x− TL(y)‖2 − L

2
‖x− y‖2

+ f(x)− f(y)− 〈∇f(y),x − y〉.

Remark 10.17. Obviously, by the descent lemma, (10.20) is satisfied for L = Lf ,
and hence, for any x ∈ E and y ∈ int(dom(f)), the inequality

F (x)− F (TLf
(y)) ≥ Lf

2
‖x− TLf

(y)‖2 − Lf
2

‖x− y‖2 + 
f (x,y)

holds.

A direct consequence of Theorem 10.16 is another version of the sufficient
decrease lemma (Lemma 10.4). This is accomplished by substituting y = x in the
fundamental prox-grad inequality.

Corollary 10.18 (sufficient decrease lemma—second version). Suppose that
f and g satisfy properties (A) and (B) of Assumption 10.1. For any x ∈ int(dom(f))
for which

f(TL(x)) ≤ f(x) + 〈∇f(x), TL(x)− x〉+ L

2
‖TL(x)− x‖2,

it holds that

F (x)− F (TL(x)) ≥
1

2L
‖GL(x)‖2.

10.4.2 Stepsize Strategies in the Convex Case

When f is also convex, we will consider, as in the nonconvex case, both constant and
backtracking stepsize strategies. The backtracking procedure, which we will refer to
as “backtracking procedure B2,” will be slightly different than the one considered
in the nonconvex case, and it will aim to find a constant Lk satisfying

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+ Lk
2

‖xk+1 − xk‖2. (10.23)

In the special case where g ≡ 0, the proximal gradient method reduces to the
gradient method xk+1 = xk − 1

Lk
∇f(xk), and condition (10.23) reduces to

f(xk)− f(xk+1) ≥ 1

2Lk
‖∇f(xk)‖2,

which is similar to the sufficient decrease condition described in Lemma 10.4, and
this is why condition (10.23) can also be viewed as a “sufficient decrease condi-
tion.”
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10.4. Analysis of the Proximal Gradient Method—The Convex Case 283

• Constant. Lk = Lf for all k.

• Backtracking procedure B2. The procedure requires two parameters
(s, η), where s > 0 and η > 1. Define L−1 = s. At iteration k (k ≥ 0)
the choice of Lk is done as follows. First, Lk is set to be equal to Lk−1.
Then, while

f(TLk
(xk)) > f(xk) + 〈∇f(xk), TLk

(xk)− xk〉+ Lk
2

‖TLk
(xk)− xk‖2,

we set Lk := ηLk. In other words, Lk is chosen as Lk = Lk−1η
ik , where

ik is the smallest nonnegative integer for which the condition

f(TLk−1ηik (x
k)) ≤ f(xk) + 〈∇f(xk), TLk−1ηik (x

k)− xk〉+
Lk
2

‖TLk−1η
ik (x

k)− xk‖2

is satisfied.

Remark 10.19 (upper and lower bounds on Lk). Under Assumption 10.1 and
by the descent lemma (Lemma 5.7), it follows that both stepsize rules ensure that
the sufficient decrease condition (10.23) is satisfied at each iteration. In addition,
the constants Lk that the backtracking procedure B2 produces satisfy the following
bounds for all k ≥ 0:

s ≤ Lk ≤ max{ηLf , s}. (10.24)

The inequality s ≤ Lk is obvious. To understand the inequality Lk ≤ max{ηLf , s},
note that there are two options. Either Lk = s or Lk > s, and in the latter case
there exists an index 0 ≤ k′ ≤ k for which the inequality (10.23) is not satisfied with
k = k′ and Lk

η replacing Lk. By the descent lemma, this implies in particular that
Lk

η < Lf , and we have thus shown that Lk ≤ max{ηLf , s}. We also note that the
bounds on Lk can be rewritten as

βLf ≤ Lk ≤ αLf ,

where

α =

⎧⎪⎨⎪⎩ 1, constant,

max
{
η, s

Lf

}
, backtracking,

β =

⎧⎪⎨⎪⎩ 1, constant,

s
Lf
, backtracking.

(10.25)

Remark 10.20 (monotonicity of the proximal gradient method). Since
condition (10.23) holds for both stepsize rules, for any k ≥ 0, we can invoke the
fundamental prox-grad inequality (10.21) with y = x = xk, L = Lk and obtain the
inequality

F (xk)− F (xk+1) ≥ Lk
2

‖xk − xk+1‖2,

which in particular implies that F (xk) ≥ F (xk+1), meaning that the method pro-
duces a nonincreasing sequence of function values.
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284 Chapter 10. The Proximal Gradient Method

10.4.3 Convergence Analysis in the Convex Case

We will assume in addition to Assumption 10.1 that f is convex. We begin by
establishing an O(1/k) rate of convergence of the generated sequence of function
values to the optimal value. Such rate of convergence is called a sublinear rate.
This is of course an improvement over the O(1/

√
k) rate that was established for

the projected subgradient and mirror descent methods. It is also not particularly
surprising that an improved rate of convergence can be established since additional
properties are assumed on the objective function.

Theorem 10.21 (O(1/k) rate of convergence of proximal gradient). Sup-
pose that Assumption 10.1 holds and that in addition f is convex. Let {xk}k≥0 be the
sequence generated by the proximal gradient method for solving problem (10.1) with
either a constant stepsize rule in which Lk ≡ Lf for all k ≥ 0 or the backtracking
procedure B2. Then for any x∗ ∈ X∗ and k ≥ 0,

F (xk)− Fopt ≤
αLf‖x0 − x∗‖2

2k
, (10.26)

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the backtracking

rule is employed.

Proof. For any n ≥ 0, substituting L = Ln, x = x∗, and y = xn in the fundamental
prox-grad inequality (10.21) and taking into account the fact that in both stepsize
rules condition (10.20) is satisfied, we obtain

2

Ln
(F (x∗)− F (xn+1)) ≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2 + 2

Ln

f (x

∗,xn)

≥ ‖x∗ − xn+1‖2 − ‖x∗ − xn‖2,

where the convexity of f was used in the last inequality. Summing the above
inequality over n = 0, 1, . . . , k− 1 and using the bound Ln ≤ αLf for all n ≥ 0 (see
Remark 10.19), we obtain

2

αLf

k−1∑
n=0

(F (x∗)− F (xn+1)) ≥ ‖x∗ − xk‖2 − ‖x∗ − x0‖2.

Thus,

k−1∑
n=0

(F (xn+1)− Fopt) ≤
αLf
2

‖x∗ − x0‖2 − αLf
2

‖x∗ − xk‖2 ≤ αLf
2

‖x∗ − x0‖2.

By the monotonicity of {F (xn)}n≥0 (see Remark 10.20), we can conclude that

k(F (xk)− Fopt) ≤
k−1∑
n=0

(F (xn+1)− Fopt) ≤
αLf
2

‖x∗ − x0‖2.

Consequently,

F (xk)− Fopt ≤ αLf‖x∗ − x0‖2
2k

.
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10.4. Analysis of the Proximal Gradient Method—The Convex Case 285

Remark 10.22. Note that we did not utilize in the proof of Theorem 10.21 the
fact that procedure B2 produces a nondecreasing sequence of constants {Lk}k≥0.
This implies in particular that the monotonicity of this sequence of constants is not
essential, and we can actually prove the same convergence rate for any backtracking
procedure that guarantees the validity of condition (10.23) and the bound Lk ≤ αLf .

We can also prove that the generated sequence is Fejér monotone, from which
convergence of the sequence to an optimal solution readily follows.

Theorem 10.23 (Fejér monotonicity of the sequence generated by the
proximal gradient method). Suppose that Assumption 10.1 holds and that in
addition f is convex. Let {xk}k≥0 be the sequence generated by the proximal gradient
method for solving problem (10.1) with either a constant stepsize rule in which Lk ≡
Lf for all k ≥ 0 or the backtracking procedure B2. Then for any x∗ ∈ X∗ and k ≥ 0,

‖xk+1 − x∗‖ ≤ ‖xk − x∗‖. (10.27)

Proof. We will repeat some of the arguments used in the proof of Theorem 10.21.
Substituting L = Lk, x = x∗, and y = xk in the fundamental prox-grad inequality
(10.21) and taking into account the fact that in both stepsize rules condition (10.20)
is satisfied, we obtain

2

Lk
(F (x∗)− F (xk+1)) ≥ ‖x∗ − xk+1‖2 − ‖x∗ − xk‖2 + 2

Lk

f(x

∗,xk)

≥ ‖x∗ − xk+1‖2 − ‖x∗ − xk‖2,

where the convexity of f was used in the last inequality. The result (10.27) now
follows by the inequality F (x∗)− F (xk+1) ≤ 0.

Thanks to the Fejér monotonicity property, we can now establish the conver-
gence of the sequence generated by the proximal gradient method.

Theorem 10.24 (convergence of the sequence generated by the proximal
gradient method). Suppose that Assumption 10.1 holds and that in addition f is
convex. Let {xk}k≥0 be the sequence generated by the proximal gradient method for
solving problem (10.1) with either a constant stepsize rule in which Lk ≡ Lf for all
k ≥ 0 or the backtracking procedure B2. Then the sequence {xk}k≥0 converges to
an optimal solution of problem (10.1).

Proof. By Theorem 10.23, the sequence is Fejér monotone w.r.t. X∗. Therefore,
by Theorem 8.16, to show convergence to a point in X∗, it is enough to show that
any limit point of the sequence {xk}k≥0 is necessarily in X∗. Let then x̃ be a limit
point of the sequence. Then there exists a subsequence {xkj}j≥0 converging to x̃.
By Theorem 10.21,

F (xkj ) → Fopt as j → ∞. (10.28)

Since F is closed, it is also lower semicontinuous, and hence F (x̃) ≤ limj→∞ F (xkj )
= Fopt, implying that x̃ ∈ X∗.
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286 Chapter 10. The Proximal Gradient Method

To derive a complexity result for the proximal gradient method, we will assume
that ‖x0 − x∗‖ ≤ R for some x∗ ∈ X∗ and some constant R > 0; for example, if
dom(g) is bounded, then R might be taken as its diameter. By inequality (10.26) it
follows that in order to obtain an ε-optimal solution of problem (10.1), it is enough
to require that

αLfR
2

2k
≤ ε,

which is the same as

k ≥ αLfR
2

2ε
.

Thus, to obtain an ε-optimal solution, an order of 1
ε iterations is required, which

is an improvement of the result for the projected subgradient method in which an
order of 1

ε2 iterations is needed (see, for example, Theorem 8.18). We summarize
the above observations in the following theorem.

Theorem 10.25 (complexity of the proximal gradient method). Under the
setting of Theorem 10.21, for any k satisfying

k ≥
⌈
αLfR

2

2ε

⌉
,

it holds that F (xk) − Fopt ≤ ε, where R is an upper bound on ‖x∗ − x0‖ for some
x∗ ∈ X∗.

In the nonconvex case (meaning when f is not necessarily convex), an O(1/
√
k)

rate of convergence of the norm of the gradient mapping was established in Theorem
10.15(c). We will now show that with the additional convexity assumption on f ,
this rate can be improved to O(1/k).

Theorem 10.26 (O(1/k) rate of convergence of the minimal norm of the
gradient mapping). Suppose that Assumption 10.1 holds and that in addition f
is convex. Let {xk}k≥0 be the sequence generated by the proximal gradient method
for solving problem (10.1) with either a constant stepsize rule in which Lk ≡ Lf for
all k ≥ 0 or the backtracking procedure B2. Then for any x∗ ∈ X∗ and k ≥ 1,

min
n=0,1,...,k

‖GαLf
(xn)‖ ≤ 2α1.5Lf‖x0 − x∗‖√

βk
, (10.29)

where α = β = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
, β = s

Lf
if

the backtracking rule is employed.

Proof. By the sufficient decrease lemma (Corollary 10.18), for any n ≥ 0,

F (xn)− F (xn+1) = F (xn)− F (TLn(x
n)) ≥ 1

2Ln
‖GLn(x

n)‖2. (10.30)

By Theorem 10.9 and the fact that βLf ≤ Ln ≤ αLf (see Remark 10.19), it follows
that

1

2Ln
‖GLn(x

n)‖2 =
Ln
2

‖GLn(x
n)‖2

L2
n

≥ βLf
2

‖GαLf
(xn)‖2

α2L2
f

=
β

2α2Lf
‖GαLf

(xn)‖2.

(10.31)
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10.4. Analysis of the Proximal Gradient Method—The Convex Case 287

Therefore, combining (10.30) and (10.31),

F (xn)− Fopt ≥ F (xn+1)− Fopt +
β

2α2Lf
‖GαLf

(xn)‖2. (10.32)

Let p be a positive integer. Summing (10.32) over n = p, p+ 1, . . . , 2p− 1 yields

F (xp)− Fopt ≥ F (x2p)− Fopt +
β

2α2Lf

2p−1∑
n=p

‖GαLf
(xn)‖2. (10.33)

By Theorem 10.21, F (xp) − Fopt ≤ αLf‖x0−x∗‖2
2p , which, combined with the fact

that F (x2p)− Fopt ≥ 0 and (10.33), implies

βp

2α2Lf
min

n=0,1,...,2p−1
‖GαLf

(xn)‖2 ≤ β

2α2Lf

2p−1∑
n=p

‖GαLf
(xn)‖2 ≤ αLf‖x0 − x∗‖2

2p
.

Thus,

min
n=0,1,...,2p−1

‖GαLf
(xn)‖2 ≤

α3L2
f‖x0 − x∗‖2

βp2
(10.34)

and also

min
n=0,1,...,2p

‖GαLf
(xn)‖2 ≤

α3L2
f‖x0 − x∗‖2

βp2
. (10.35)

We conclude that for any k ≥ 1,

min
n=0,1,...,k

‖GαLf
(xn)‖2 ≤

α3L2
f‖x0 − x∗‖2

βmin{(k/2)2, ((k + 1)/2)2} =
4α3L2

f‖x0 − x∗‖2

βk2
.

When we assume further that f is Lf -smooth over the entire space E, we can
use Lemma 10.12 to obtain an improved result in the case of a constant stepsize.

Theorem 10.27 (O(1/k) rate of convergence of the norm of the gradient
mapping under the constant stepsize rule). Suppose that Assumption 10.1
holds and that in addition f is convex and Lf -smooth over E. Let {xk}k≥0 be the
sequence generated by the proximal gradient method for solving problem (10.1) with
a constant stepsize rule in which Lk ≡ Lf for all k ≥ 0. Then for any x∗ ∈ X∗ and
k ≥ 0,

(a) ‖GLf
(xk+1)‖ ≤ ‖GLf

(xk)‖;

(b) ‖GLf
(xk)‖ ≤ 2Lf‖x0−x∗‖

k+1 .

Proof. Invoking Lemma 10.12 with x = xk, we obtain (a). Part (b) now follows
by substituting α = β = 1 in the result of Theorem 10.26 and noting that by part
(a), ‖GLf

(xk)‖ = minn=0,1,...,k ‖GLf
(xn)‖.
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288 Chapter 10. The Proximal Gradient Method

10.5 The Proximal Point Method
Consider the problem

min
x∈E

g(x), (10.36)

where g : E → (−∞,∞] is a proper closed and convex function. Problem (10.36)
is actually a special case of the composite problem (10.1) with f ≡ 0. The update
step of the proximal gradient method in this case takes the form

xk+1 = prox 1
Lk
g(x

k).

Taking Lk = 1
c for some c > 0, we obtain the proximal point method.

The Proximal Point Method

Initialization: pick x0 ∈ E and c > 0.
General step (k ≥ 0):

xk+1 = proxcg(x
k).

The proximal point method is actually not a practical algorithm since the
general step asks to minimize the function g(x) + c

2‖x− xk‖2, which in general is
as hard to accomplish as solving the original problem of minimizing g. Since the
proximal point method is a special case of the proximal gradient method, we can
deduce its main convergence results from the corresponding results on the proximal
gradient method. Specifically, since the smooth part f ≡ 0 is 0-smooth, we can
take any constant stepsize to guarantee convergence and Theorems 10.21 and 10.24
imply the following result.

Theorem 10.28 (convergence of the proximal point method). Let g : E →
(−∞,∞] be a proper closed and convex function. Assume that problem

min
x∈E

g(x)

has a nonempty optimal set X∗, and let the optimal value be given by gopt. Let
{xk}k≥0 be the sequence generated by the proximal point method with parameter
c > 0. Then

(a) g(xk)− gopt ≤ ‖x0−x∗‖2
2ck for any x∗ ∈ X∗ and k ≥ 0;

(b) the sequence {xk}k≥0 converges to some point in X∗.

10.6 Convergence of the Proximal Gradient
Method—The Strongly Convex Case

In the case where f is assumed to be σ-strongly convex for some σ > 0, the sublinear
rate of convergence can be improved into a linear rate of convergence, meaning a
rate of the form O(qk) for some q ∈ (0, 1). Throughout the analysis of the strongly
convex case we denote the unique optimal solution of problem (10.1) by x∗.
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10.6. Convergence of the Proximal Gradient Method—Strongly Convex Case 289

Theorem 10.29 (linear rate of convergence of the proximal gradient
method—strongly convex case). Suppose that Assumption 10.1 holds and that
in addition f is σ-strongly convex (σ > 0). Let {xk}k≥0 be the sequence generated
by the proximal gradient method for solving problem (10.1) with either a constant
stepsize rule in which Lk ≡ Lf for all k ≥ 0 or the backtracking procedure B2. Let

α =

⎧⎪⎨⎪⎩ 1, constant stepsize,

max
{
η, s

Lf

}
, backtracking.

Then for any k ≥ 0,

(a) ‖xk+1 − x∗‖2 ≤
(
1− σ

αLf

)
‖xk − x∗‖2;

(b) ‖xk − x∗‖2 ≤
(
1− σ

αLf

)k
‖x0 − x∗‖2;

(c) F (xk+1)− Fopt ≤ αLf

2

(
1− σ

αLf

)k+1

‖x0 − x∗‖2.

Proof. Plugging L = Lk, x = x∗, and y = xk into the fundamental prox-grad
inequality (10.21) and taking into account the fact that in both stepsize rules con-
dition (10.20) is satisfied, we obtain

F (x∗)− F (xk+1) ≥ Lk
2

‖x∗ − xk+1‖2 − Lk
2

‖x∗ − xk‖2 + 
f(x
∗,xk).

Since f is σ-strongly convex, it follows by Theorem 5.24(ii) that


f (x
∗,xk) = f(x∗)− f(xk)− 〈∇f(xk),x∗ − xk〉 ≥ σ

2
‖xk − x∗‖2.

Thus,

F (x∗)− F (xk+1) ≥ Lk
2

‖x∗ − xk+1‖2 − Lk − σ

2
‖x∗ − xk‖2. (10.37)

Since x∗ is a minimizer of F , F (x∗)− F (xk+1) ≤ 0, and hence, by (10.37) and the
fact that Lk ≤ αLf (see Remark 10.19),

‖xk+1 − x∗‖2 ≤
(
1− σ

Lk

)
‖xk − x∗‖2 ≤

(
1− σ

αLf

)
‖xk − x∗‖2,

establishing part (a). Part (b) follows immediately by (a). To prove (c), note that
by (10.37),

F (xk+1)− Fopt ≤
Lk − σ

2
‖xk − x∗‖2 − Lk

2
‖xk+1 − x∗‖2

≤ αLf − σ

2
‖xk − x∗‖2

=
αLf
2

(
1− σ

αLf

)
‖xk − x∗‖2

≤ αLf
2

(
1− σ

αLf

)k+1

‖x0 − x∗‖2,

where part (b) was used in the last inequality.
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290 Chapter 10. The Proximal Gradient Method

Theorem 10.29 immediately implies that in the strongly convex case, the prox-
imal gradient method requires an order of log( 1ε ) iterations to obtain an ε-optimal
solution.

Theorem 10.30 (complexity of the proximal gradient method—The
strongly convex case). Under the setting of Theorem 10.29, for any k ≥ 1
satisfying

k ≥ ακ log

(
1

ε

)
+ ακ log

(
αLfR

2

2

)
,

it holds that F (xk)−Fopt ≤ ε, where R is an upper bound on ‖x0−x∗‖ and κ =
Lf

σ .

Proof. Let k ≥ 1. By Theorem 10.29 and the definition of κ, a sufficient condition
for the inequality F (xk)− Fopt ≤ ε to hold is that

αLf
2

(
1− 1

ακ

)k
R2 ≤ ε,

which is the same as

k log

(
1− 1

ακ

)
≤ log

(
2ε

αLfR2

)
. (10.38)

Since log(1 − x) ≤ −x for any57 x ≤ 1, it follows that a sufficient condition for
(10.38) to hold is that

− 1

ακ
k ≤ log

(
2ε

αLfR2

)
,

namely, that

k ≥ ακ log

(
1

ε

)
+ ακ log

(
αLfR

2

2

)
.

10.7 The Fast Proximal Gradient Method—FISTA

10.7.1 The Method

The proximal gradient method achieves an O(1/k) rate of convergence in func-
tion values to the optimal value. In this section we will show how to accelerate the
method in order to obtain a rate ofO(1/k2) in function values. The method is known
as the “fast proximal gradient method,” but we will also refer to it as “FISTA,”
which is an acronym for “fast iterative shrinkage-thresholding algorithm”; see Ex-
ample 10.37 for further explanations. The method was devised and analyzed by
Beck and Teboulle in the paper [18], from which the convergence analysis is taken.

We will assume that f is convex and that it is Lf -smooth, meaning that it
is Lf -smooth over the entire space E. We gather all the required properties in the
following assumption.

57The inequality also holds for x = 1 since in that case the left-hand side is −∞.
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10.7. The Fast Proximal Gradient Method—FISTA 291

Assumption 10.31.

(A) g : E → (−∞,∞] is proper closed and convex.

(B) f : E → R is Lf -smooth and convex.

(C) The optimal set of problem (10.1) is nonempty and denoted by X∗. The opti-
mal value of the problem is denoted by Fopt.

The description of FISTA now follows.

FISTA

Input: (f, g,x0), where f and g satisfy properties (A) and (B) in Assumption
10.31 and x0 ∈ E.
Initialization: set y0 = x0 and t0 = 1.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0;

(b) set xk+1 = prox 1
Lk
g

(
yk − 1

Lk
∇f(yk)

)
;

(c) set tk+1 =
1+

√
1+4t2k
2 ;

(d) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

As usual, we will consider two options for the choice of Lk: constant and back-
tracking. The backtracking procedure for choosing the stepsize is referred to as
“backtracking procedure B3” and is identical to procedure B2 with the sole differ-
ence that it is invoked on the vector yk rather than on xk.

• Constant. Lk = Lf for all k.

• Backtracking procedure B3. The procedure requires two parameters
(s, η), where s > 0 and η > 1. Define L−1 = s. At iteration k (k ≥ 0)
the choice of Lk is done as follows: First, Lk is set to be equal to Lk−1.
Then, while (recall that TL(y) ≡ T f,gL (y) = prox 1

L g
(y − 1

L∇f(y))),

f(TLk
(yk)) > f(yk) + 〈∇f(yk), TLk

(yk)− yk〉+ Lk
2

‖TLk
(yk)− yk‖2,

we set Lk := ηLk. In other words, the stepsize is chosen as Lk=Lk−1η
ik ,

where ik is the smallest nonnegative integer for which the condition

f(TLk−1η
ik (y

k)) ≤ f(yk) + 〈∇f(yk), TLk−1η
ik (y

k)− yk〉

+
Lk
2

‖TLk−1η
ik (y

k)− yk‖2

is satisfied.
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292 Chapter 10. The Proximal Gradient Method

In both stepsize rules, the following inequality is satisfied for any k ≥ 0:

f(TLk
(yk)) ≤ f(yk) + 〈∇f(yk), TLk

(yk)− yk〉+ Lk
2

‖TLk
(yk)− yk‖2. (10.39)

Remark 10.32. Since the backtracking procedure B3 is identical to the B2 procedure
(only employed on yk), the arguments of Remark 10.19 are still valid, and we have
that

βLf ≤ Lk ≤ αLf ,

where α and β are given in (10.25).

The next lemma shows an important lower bound on the sequence {tk}k≥0
that will be used in the convergence proof.

Lemma 10.33. Let {tk}k≥0 be the sequence defined by

t0 = 1, tk+1 =
1 +

√
1 + 4t2k
2

, k ≥ 0.

Then tk ≥ k+2
2 for all k ≥ 0.

Proof. The proof is by induction on k. Obviously, for k = 0, t0 = 1 ≥ 0+2
2 . Suppose

that the claim holds for k, meaning tk ≥ k+2
2 . We will prove that tk+1 ≥ k+3

2 . By
the recursive relation defining the sequence and the induction assumption,

tk+1 =
1 +

√
1 + 4t2k
2

≥ 1 +
√
1 + (k + 2)2

2
≥ 1 +

√
(k + 2)2

2
=
k + 3

2
.

10.7.2 Convergence Analysis of FISTA

Theorem 10.34 (O(1/k2) rate of convergence of FISTA). Suppose that As-
sumption 10.31 holds. Let {xk}k≥0 be the sequence generated by FISTA for solving
problem (10.1) with either a constant stepsize rule in which Lk ≡ Lf for all k ≥ 0
or the backtracking procedure B3. Then for any x∗ ∈ X∗ and k ≥ 1,

F (xk)− Fopt ≤ 2αLf‖x0 − x∗‖2
(k + 1)2

,

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the backtracking

rule is employed.

Proof. Let k ≥ 1. Substituting x = t−1k x∗ + (1 − t−1k )xk, y = yk, and L = Lk in
the fundamental prox-grad inequality (10.21), taking into account that inequality
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10.7. The Fast Proximal Gradient Method—FISTA 293

(10.39) is satisfied and that f is convex, we obtain that

F (t−1k x∗ + (1− t−1k )xk)− F (xk+1)

≥ Lk
2

‖xk+1 − (t−1k x∗ + (1− t−1k )xk)‖2 − Lk
2

‖yk − (t−1k x∗ + (1− t−1k )xk)‖2

=
Lk
2t2k

‖tkxk+1 − (x∗ + (tk − 1)xk)‖2 − Lk
2t2k

‖tkyk − (x∗ + (tk − 1)xk)‖2. (10.40)

By the convexity of F ,

F (t−1k x∗ + (1− t−1k )xk) ≤ t−1k F (x∗) + (1− t−1k )F (xk).

Therefore, using the notation vn ≡ F (xn)− Fopt for any n ≥ 0,

F (t−1k x∗+(1− t−1k )xk)−F (xk+1) ≤ (1− t−1k )(F (xk)−F (x∗))− (F (xk+1)−F (x∗))

= (1− t−1k )vk − vk+1. (10.41)

On the other hand, using the relation yk = xk +
(
tk−1−1
tk

)
(xk − xk−1),

‖tkyk − (x∗ + (tk − 1)xk)‖2 = ‖tkxk + (tk−1 − 1)(xk − xk−1)− (x∗ + (tk − 1)xk)‖2

= ‖tk−1xk − (x∗ + (tk−1 − 1)xk−1)‖2. (10.42)

Combining (10.40), (10.41), and (10.42), we obtain that

(t2k − tk)vk − t2kvk+1 ≥ Lk
2

‖uk+1‖2 − Lk
2

‖uk‖2,

where we use the notation un = tn−1x
n − (x∗ + (tn−1 − 1)xn−1) for any n ≥ 0. By

the update rule of tk+1, we have t2k − tk = t2k−1, and hence

2

Lk
t2k−1vk − 2

Lk
t2kvk+1 ≥ ‖uk+1‖2 − ‖uk‖2.

Since Lk ≥ Lk−1, we can conclude that

2

Lk−1
t2k−1vk − 2

Lk
t2kvk+1 ≥ ‖uk+1‖2 − ‖uk‖2.

Thus,

‖uk+1‖2 + 2

Lk
t2kvk+1 ≤ ‖uk‖2 + 2

Lk−1
t2k−1vk,

and hence, for any k ≥ 1,

‖uk‖2 + 2

Lk−1
t2k−1vk ≤ ‖u1‖2 + 2

L0
t20v1 = ‖x1 − x∗‖2 + 2

L0
(F (x1)−Fopt) (10.43)

Substituting x = x∗,y = y0, and L = L0 in the fundamental prox-grad inequality
(10.21), taking into account the convexity of f yields

2

L0
(F (x∗)− F (x1)) ≥ ‖x1 − x∗‖2 − ‖y0 − x∗‖2,

which, along with the fact that y0 = x0, implies the bound

‖x1 − x∗‖2 + 2

L0
(F (x1)− Fopt) ≤ ‖x0 − x∗‖2.
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294 Chapter 10. The Proximal Gradient Method

Combining the last inequality with (10.43), we get

2

Lk−1
t2k−1vk ≤ ‖uk‖2 + 2

Lk−1
t2k−1vk ≤ ‖x0 − x∗‖2.

Thus, using the bound Lk−1 ≤ αLf , the definition of vk, and Lemma 10.33,

F (xk)− Fopt ≤
Lk−1‖x0 − x∗‖2

2t2k−1
≤ 2αLf‖x0 − x∗‖2

(k + 1)2
.

Remark 10.35 (alternative choice for tk). A close inspection of the proof of
Theorem 10.34 reveals that the result is correct if {tk}k≥0 is any sequence satisfying
the following two properties for any k ≥ 0: (a) tk ≥ k+2

2 ; (b) t2k+1 − tk+1 ≤ t2k. The

choice tk = k+2
2 also satisfies these two properties. The validity of (a) is obvious;

to show (b), note that

t2k+1 − tk+1 = tk+1(tk+1 − 1) =
k + 3

2
· k + 1

2
=
k2 + 4k + 3

4

≤ k2 + 4k + 4

4
=

(k + 2)2

4
= t2k.

Remark 10.36. Note that FISTA has an O(1/k2) rate of convergence in function
values, while the proximal gradient method has an O(1/k) rate of convergence. This
improvement was achieved despite the fact that the dominant computational steps
at each iteration of both methods are essentially the same: one gradient evaluation
and one prox computation.

10.7.3 Examples

Example 10.37. Consider the following model, which was already discussed in
Example 10.2:

min
x∈Rn

f(x) + λ‖x‖1,

where λ > 0 and f : Rn → R is assumed to be convex and Lf -smooth. The update
formula of the proximal gradient method with constant stepsize 1

Lf
has the form

xk+1 = T λ
Lf

(
xk − 1

Lf
∇f(xk)

)
.

As was already noted in Example 10.3, since at each iteration one shrinkage/soft-
thresholding operation is performed, this method is also known as the iterative
shrinkage-thresholding algorithm (ISTA). The general update step of the accelerated
proximal gradient method discussed in this section takes the following form:

(a) set xk+1 = T λ
Lf

(
yk − 1

Lf
∇f(yk)

)
;

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



10.7. The Fast Proximal Gradient Method—FISTA 295

(b) set tk+1 =
1+

√
1+4t2k
2 ;

(c) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

The above scheme truly deserves to be called “fast iterative shrinkage/thresholding
algorithm” (FISTA) since it is an accelerated method that performs at each iteration
a thresholding step. In this book we adopt the convention and use the acronym
FISTA as the name of the fast proximal gradient method for a general nonsmooth
part g.

Example 10.38 (l1-regularized least squares). As a special instance of Exam-
ple 10.37, consider the problem

min
x∈Rn

1

2
‖Ax− b‖22 + λ‖x‖1, (10.44)

where A ∈ Rm×n,b ∈ Rm, and λ > 0. The problem fits model (10.1) with
f(x) = 1

2‖Ax − b‖22 and g(x) = λ‖x‖1. The function f is Lf -smooth with
Lf =

∥∥ATA
∥∥
2,2

= λmax(A
TA) (see Example 5.2). The update step of FISTA

has the following form:

(a) set xk+1 = T λ
Lk

(
yk − 1

Lk
AT (Ayk − b)

)
;

(b) set tk+1 =
1+

√
1+4t2k
2 ;

(c) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

The update step of the proximal gradient method, which in this case is the same as
ISTA, is

xk+1 = T λ
Lk

(
xk − 1

Lk
AT (Axk − b)

)
.

The stepsizes in both methods can be chosen to be the constant Lk ≡ λmax(A
TA).

To illustrate the difference in the actual performance of ISTA and FISTA, we
generated an instance of the problem with λ = 1 and A ∈ R100×110. The com-
ponents of A were independently generated using a standard normal distribution.
The “true” vector is xtrue = e3 − e7, and b was chosen as b = Axtrue. We ran
200 iterations of ISTA and FISTA in order to solve problem (10.44) with initial
vector x = e, the vector of all ones. It is well known that the l1-norm element in
the objective function is a regularizer that promotes sparsity, and we thus expect
that the optimal solution of (10.44) will be close to the “true” sparse vector xtrue.
The distances to optimality in terms of function values of the sequences generated
by the two methods as a function of the iteration index are plotted in Figure 10.1,
where it is apparent that FISTA is far superior to ISTA.

In Figure 10.2 we plot the vectors that were obtained by the two methods.
Obviously, the solution produced by 200 iterations of FISTA is much closer to the
optimal solution (which is very close to e3 − e7) than the solution obtained after
200 iterations of ISTA.
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Figure 10.1. Results of 200 iterations of ISTA and FISTA on an l1-
regularized least squares problem.
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Figure 10.2. Solutions obtained by ISTA (left) and FISTA (right).

10.7.4 MFISTA
58

FISTA is not a monotone method, meaning that the sequence of function values
it produces is not necessarily nonincreasing. It is possible to define a monotone
version of FISTA, which we call MFISTA, which is a descent method and at the
same time preserves the same rate of convergence as FISTA.

58MFISTA and its convergence analysis are from the work of Beck and Teboulle [17].
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10.7. The Fast Proximal Gradient Method—FISTA 297

MFISTA

Input: (f, g,x0), where f and g satisfy properties (A) and (B) in Assumption
10.31 and x0 ∈ E.
Initialization: set y0 = x0 and t0 = 1.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0;

(b) set zk = prox 1
Lk
g

(
yk − 1

Lk
∇f(yk)

)
;

(c) choose xk+1 ∈ E such that F (xk+1) ≤ min{F (zk), F (xk)};

(d) set tk+1 =
1+

√
1+4t2k
2 ;

(e) compute yk+1 = xk+1 + tk
tk+1

(zk − xk+1) +
(
tk−1
tk+1

)
(xk+1 − xk).

Remark 10.39. The choice xk+1 ∈ argmin{F (x) : x = xk, zk} is a very simple
rule ensuring the condition F (xk+1) ≤ min{F (zk), F (xk)}. We also note that the
convergence established in Theorem 10.40 only requires the condition F (xk+1) ≤
F (zk).

The convergence result of MFISTA, whose proof is a minor adjustment of the
proof of Theorem 10.34, is given below.

Theorem 10.40 (O(1/k2) rate of convergence of MFISTA). Suppose that
Assumption 10.31 holds. Let {xk}k≥0 be the sequence generated by MFISTA for
solving problem (10.1) with either a constant stepsize rule in which Lk ≡ Lf for all
k ≥ 0 or the backtracking procedure B3. Then for any x∗ ∈ X∗ and k ≥ 1,

F (xk)− Fopt ≤ 2αLf‖x0 − x∗‖2
(k + 1)2

,

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the backtracking

rule is employed.

Proof. Let k ≥ 1. Substituting x = t−1k x∗ + (1 − t−1k )xk, y = yk, and L = Lk in
the fundamental prox-grad inequality (10.21), taking into account that inequality
(10.39) is satisfied and that f is convex, we obtain that

F (t−1k x∗ + (1− t−1k )xk)− F (zk)

≥ Lk
2

‖zk − (t−1k x∗ + (1 − t−1k )xk)‖2 − Lk
2

‖yk − (t−1k x∗ + (1− t−1k )xk)‖2

=
Lk
2t2k

‖tkzk − (x∗ + (tk − 1)xk)‖2 − Lk
2t2k

‖tkyk − (x∗ + (tk − 1)xk)‖2. (10.45)

By the convexity of F ,

F (t−1k x∗ + (1− t−1k )xk) ≤ t−1k F (x∗) + (1− t−1k )F (xk).
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298 Chapter 10. The Proximal Gradient Method

Therefore, using the notation vn ≡ F (xn) − Fopt for any n ≥ 0 and the fact that
F (xk+1) ≤ F (zk), it follows that

F (t−1k x∗ + (1 − t−1k )xk)− F (zk) ≤ (1 − t−1k )(F (xk)− F (x∗))− (F (xk+1)− F (x∗))

= (1 − t−1k )vk − vk+1. (10.46)

On the other hand, using the relation yk = xk +
tk−1

tk
(zk−1 − xk) +

(
tk−1−1
tk

)
(xk −

xk−1), we have

tky
k − (x∗ + (tk − 1)xk) = tk−1z

k−1 − (x∗ + (tk−1 − 1)xk−1). (10.47)

Combining (10.45), (10.46), and (10.47), we obtain that

(t2k − tk)vk − t2kvk+1 ≥ Lk
2

‖uk+1‖2 − Lk
2

‖uk‖2,

where we use the notation un = tn−1z
n−1 − (x∗ + (tn−1 − 1)xn−1) for any n ≥ 0.

By the update rule of tk+1, we have t2k − tk = t2k−1, and hence

2

Lk
t2k−1vk − 2

Lk
t2kvk+1 ≥ ‖uk+1‖2 − ‖uk‖2.

Since Lk ≥ Lk−1, we can conclude that

2

Lk−1
t2k−1vk − 2

Lk
t2kvk+1 ≥ ‖uk+1‖2 − ‖uk‖2.

Thus,

‖uk+1‖2 + 2

Lk
t2kvk+1 ≤ ‖uk‖2 + 2

Lk−1
t2k−1vk,

and hence, for any k ≥ 1,

‖uk‖2+ 2

Lk−1
t2k−1vk ≤ ‖u1‖2 + 2

L0
t20v1 = ‖z0 −x∗‖2+ 2

L0
(F (x1)−Fopt). (10.48)

Substituting x = x∗,y = y0, and L = L0 in the fundamental prox-grad inequality
(10.21), taking into account the convexity of f , yields

2

L0
(F (x∗)− F (z0)) ≥ ‖z0 − x∗‖2 − ‖y0 − x∗‖2,

which, along with the facts that y0 = x0 and F (x1) ≤ F (z0), implies the bound

‖z0 − x∗‖2 + 2

L0
(F (x1)− Fopt) ≤ ‖x0 − x∗‖2.

Combining the last inequality with (10.48), we get

2

Lk−1
t2k−1vk ≤ ‖uk‖2 + 2

Lk−1
t2k−1vk ≤ ‖x0 − x∗‖2.

Thus, using the bound Lk−1 ≤ αLf , the definition of vk, and Lemma 10.33,

F (xk)− Fopt ≤
Lk−1‖x0 − x∗‖2

2t2k−1
≤ 2αLf‖x0 − x∗‖2

(k + 1)2
.
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10.7. The Fast Proximal Gradient Method—FISTA 299

10.7.5 Weighted FISTA

Consider the main composite model (10.1) under Assumption 10.31. Suppose that
E = Rn. Recall that a standing assumption in this chapter is that the underlying
space is Euclidean, but this does not mean that the endowed inner product is the
dot product. Assume that the endowed inner product is the Q-inner product:
〈x,y〉 = xTQy, where Q ∈ Sn++. In this case, as explained in Remark 3.32, the
gradient is given by

∇f(x) = Q−1Df (x),

where

Df (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂f
∂x1

(x)

∂f
∂x2

(x)

...

∂f
∂xn

(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

We will use a Lipschitz constant of ∇f w.r.t. the Q-norm, which we will denote by
LQ
f . The constant is essentially defined by the relation

‖Q−1Df (x)−Q−1Df (y)‖Q ≤ LQ
f ‖x− y‖Q for any x,y ∈ R

n.

The general update rule for FISTA in this case will have the following form:

(a) set xk+1 = prox 1

L
Q
f

g

(
yk − 1

LQ
f

Q−1Df (y
k)
)
;

(b) set tk+1 =
1+

√
1+4t2k
2 ;

(c) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

Obviously, the prox operator in step (a) is computed in terms of the Q-norm,
meaning that

proxh(x) = argminu∈Rn

{
h(u) +

1

2
‖u− x‖2Q

}
.

The convergence result of Theorem 10.34 will also be written in terms of the Q-
norm:

F (xk)− Fopt ≤
2LQ

f ‖x0 − x∗‖2Q
(k + 1)2

.

10.7.6 Restarting FISTA in the Strongly Convex Case

We will now assume that in addition to Assumption 10.31, f is σ-strongly convex
for some σ > 0. Recall that by Theorem 10.30, the proximal gradient method
attains an ε-optimal solution after an order of O(κ log(1ε )) iterations (κ =

Lf

σ ).
The natural question is obviously how the complexity result improves when using
FISTA instead of the proximal gradient method. Perhaps surprisingly, one option
for obtaining such an improved result is by considering a version of FISTA that
incorporates a restarting of the method after a constant amount of iterations.

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



300 Chapter 10. The Proximal Gradient Method

Restarted FISTA

Initialization: pick z−1 ∈ E and a positive integer N . Set z0 = TLf
(z−1).

General step (k ≥ 0):

• run N iterations of FISTA with constant stepsize (Lk ≡ Lf ) and input
(f, g, zk) and obtain a sequence {xn}Nn=0;

• set zk+1 = xN .

The algorithm essentially consists of “outer” iterations, and each one employs N
iterations of FISTA. To avoid confusion, the outer iterations will be called cycles.
Theorem 10.41 below shows that an order of O(

√
κ log(1ε )) FISTA iterations are

enough to guarantee that an ε-optimal solution is attained.

Theorem 10.41 (O(
√
κ log(1

ε
)) complexity of restarted FISTA). Suppose

that Assumption 10.31 holds and that f is σ-strongly convex (σ > 0). Let {zk}k≥0 be
the sequence generated by the restarted FISTA method employed with N = �

√
8κ−1�,

where κ =
Lf

σ . Let R be an upper bound on ‖z−1 − x∗‖, where x∗ is the unique
optimal solution of problem (10.1). Then59

(a) for any k ≥ 0,

F (zk)− Fopt ≤
LfR

2

2

(
1

2

)k
;

(b) after k iterations of FISTA with k satisfying

k ≥
√
8κ

(
log(1ε )

log(2)
+

log(LfR
2)

log(2)

)
,

an ε-optimal solution is obtained at the end of the last completed cycle. That
is,

F (z k
N !)− Fopt ≤ ε.

Proof. (a) By Theorem 10.34, for any n ≥ 0,

F (zn+1)− Fopt ≤ 2Lf‖zn − x∗‖2
(N + 1)2

. (10.49)

Since f is σ-strongly convex, it follows by Theorem 5.25(b) that

F (zn)− Fopt ≥
σ

2
‖zn − x∗‖2,

which, combined with (10.49), yields (recalling that κ = Lf/σ)

F (zn+1)− Fopt ≤
4κ(F (zn)− Fopt)

(N + 1)2
. (10.50)

59Note that the index k in part (a) stands for the number of cycles, while in part (b) it is the
number of FISTA iterations.
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10.7. The Fast Proximal Gradient Method—FISTA 301

Since N ≥
√
8κ− 1, it follows that 4κ

(N+1)2 ≤ 1
2 , and hence by (10.50)

F (zn+1)− Fopt ≤
1

2
(F (zn)− Fopt).

Employing the above inequality for n = 0, 1, . . . , k − 1, we conclude that

F (zk)− Fopt ≤
(
1

2

)k
(F (z0)− Fopt). (10.51)

Note that z0 = TLf
(z−1). Invoking the fundamental prox-grad inequality (10.21)

with x = x∗,y = z−1, L = Lf , and taking into account the convexity of f , we
obtain

F (x∗)− F (z0) ≥ Lf
2

‖x∗ − z0‖2 − Lf
2

‖x∗ − z−1‖2,

and hence

F (z0)− Fopt ≤
Lf
2

‖x∗ − z−1‖2 ≤ LfR
2

2
. (10.52)

Combining (10.51) and (10.52), we obtain

F (zk)− Fopt ≤ LfR
2

2

(
1

2

)k
.

(b) If k iterations of FISTA were employed, then  kN ! cycles were completed.
By part (a),

F (z k
N !)− Fopt ≤ LfR

2

2

(
1

2

) k
N !

≤ LfR
2

(
1

2

) k
N

.

Therefore, a sufficient condition for the inequality F (z k
N !) − Fopt ≤ ε to hold is

that

LfR
2

(
1

2

) k
N

≤ ε,

which is equivalent to the inequality

k ≥ N

(
log(1ε )

log(2)
+

log(LfR
2)

log(2)

)
.

The claim now follows by the fact that N = �
√
8κ− 1� ≤

√
8κ.

10.7.7 The Strongly Convex Case (Once Again)—Variation on
FISTA

As in the previous section, we will assume that in addition to Assumption 10.31,
f is σ-strongly convex for some σ > 0. We will define a variant of FISTA, called
V-FISTA, that will exhibit the improved linear rate of convergence of the restarted
FISTA. This rate is established without any need of restarting of the method.
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302 Chapter 10. The Proximal Gradient Method

V-FISTA

Input: (f, g,x0), where f and g satisfy properties (A) and (B) in Assumption
10.31, f is σ-strongly convex (σ > 0), and x0 ∈ E.

Initialization: set y0 = x0, t0 = 1 and κ =
Lf

σ .
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) set xk+1 = prox 1
Lf
g

(
yk − 1

Lf
∇f(yk)

)
;

(b) compute yk+1 = xk+1 +
(√

κ−1√
κ+1

)
(xk+1 − xk).

The improved linear rate of convergence is established in the next result, whose
proof is a variation on the proof of the rate of convergence of FISTA for the non–
strongly convex case (Theorem 10.34).

Theorem 10.42 (O((1−1/
√
κ)k) rate of convergence of V-FISTA).60 Sup-

pose that Assumption 10.31 holds and that f is σ-strongly convex (σ > 0). Let
{xk}k≥0 be the sequence generated by V-FISTA for solving problem (10.1). Then
for any x∗ ∈ X∗ and k ≥ 0,

F (xk)− Fopt ≤
(
1− 1√

κ

)k (
F (x0)− Fopt +

σ

2
‖x0 − x∗‖2

)
, (10.53)

where κ =
Lf

σ .

Proof. By the fundamental prox-grad inequality (Theorem 10.16) and the σ-strong
convexity of f (invoking Theorem 5.24), it follows that for any x,y ∈ E,

F (x)− F (TLf
(y)) ≥ Lf

2
‖x− TLf

y)‖2 − Lf
2

‖x− y‖2 + f(x)− f(y)− 〈∇f(y),x − y〉

≥ Lf
2

‖x− TLf
(y)‖2 − Lf

2
‖x− y‖2 + σ

2
‖x− y‖2.

Therefore,

F (x)− F (TLf
(y)) ≥ Lf

2
‖x− TLf

(y)‖2 − Lf − σ

2
‖x− y‖2. (10.54)

Let k ≥ 0 and t =
√
κ =

√
Lf

σ . Substituting x = t−1x∗ + (1 − t−1)xk and

y = yk into (10.54), we obtain that

F (t−1x∗ + (1− t−1)xk)− F (xk+1)

≥ Lf
2

‖xk+1 − (t−1x∗ + (1− t−1)xk)‖2 − Lf − σ

2
‖yk − (t−1x∗ + (1 − t−1)xk)‖2

=
Lf
2t2

‖txk+1 − (x∗ + (t− 1)xk)‖2 − Lf − σ

2t2
‖tyk − (x∗ + (t− 1)xk)‖2. (10.55)

60The proof of Theorem 10.42 follows the proof of Theorem 4.10 from the review paper of
Chambolle and Pock [42].
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10.7. The Fast Proximal Gradient Method—FISTA 303

By the σ-strong convexity of F ,

F (t−1x∗ + (1− t−1)xk) ≤ t−1F (x∗) + (1− t−1)F (xk)− σ

2
t−1(1 − t−1)‖xk − x∗‖2.

Therefore, using the notation vn ≡ F (xn)− Fopt for any n ≥ 0,

F (t−1x∗ + (1− t−1)xk)− F (xk+1)

≤ (1 − t−1)(F (xk)− F (x∗))− (F (xk+1)− F (x∗))− σ

2
t−1(1− t−1)‖xk − x∗‖2

= (1 − t−1)vk − vk+1 − σ

2
t−1(1− t−1)‖xk − x∗‖2,

which, combined with (10.55), yields the inequality

t(t− 1)vk +
Lf − σ

2
‖tyk − (x∗ + (t− 1)xk)‖2 − σ(t− 1)

2
‖xk − x∗‖2

≥ t2vk+1 +
Lf
2

‖txk+1 − (x∗ + (t− 1)xk)‖2. (10.56)

We will use the following identity that holds for any a,b ∈ E and β ∈ [0, 1):

‖a+ b‖2 − β‖a‖2 = (1− β)

∥∥∥∥a+
1

1− β
b

∥∥∥∥2 − β

1− β
‖b‖2.

Plugging a = xk −x∗,b = t(yk −xk), and β = σ(t−1)
Lf−σ into the above inequality, we

obtain

Lf − σ

2
‖t(yk − xk) + xk − x∗‖2 − σ(t− 1)

2
‖xk − x∗‖2

=
Lf − σ

2

[
‖t(yk − xk) + xk − x∗‖2 − σ(t − 1)

Lf − σ
‖xk − x∗‖2

]
=
Lf − σ

2

[
Lf − σt

Lf − σ

∥∥∥∥xk − x∗ +
Lf − σ

Lf − σt
t(yk − xk)

∥∥∥∥2 − σ(t− 1)

Lf − σt
‖xk − x∗‖2

]

≤ Lf − σt

2

∥∥∥∥xk − x∗ +
Lf − σ

Lf − σt
t(yk − xk)

∥∥∥∥2 .
We can therefore conclude from the above inequality and (10.56) that

t(t− 1)vk +
Lf − σt

2

∥∥∥∥xk − x∗ +
Lf − σ

Lf − σt
t(yk − xk)

∥∥∥∥2
≥ t2vk+1 +

Lf
2

‖txk+1 − (x∗ + (t− 1)xk)‖2. (10.57)

If k ≥ 1, then using the relations yk = xk +
√
κ−1√
κ+1

(xk − xk−1) and t =
√
κ =

√
Lf

σ ,

we obtain

xk − x∗ +
Lf − σ

Lf − σt
t(yk − xk) = xk − x∗ +

Lf − σ

Lf − σt

t(t− 1)

t+ 1
(xk − xk−1)

= xk − x∗ +
κ− 1

κ−
√
κ

√
κ(

√
κ− 1)√

κ+ 1
(xk − xk−1)

= xk − x∗ + (
√
κ− 1)(xk − xk−1)

= txk − (x∗ + (t− 1)xk−1),
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304 Chapter 10. The Proximal Gradient Method

and obviously, for the case k = 0 (recalling that y0 = x0),

x0 − x∗ +
Lf − σ

Lf − σt
t(y0 − x0) = x0 − x∗.

We can thus deduce that (10.57) can be rewritten as (after division by t2 and using

again the definition of t as t =
√

Lf

σ )

vk+1 +
σ

2
‖txk+1 − (x∗ + (t− 1)xk)‖2

≤

⎧⎪⎨⎪⎩
(
1− 1

t

) [
vk +

σ
2 ‖txk − (x∗ + (t− 1)xk−1)‖2

]
, k ≥ 1,(

1− 1
t

) [
v0 +

σ
2 ‖x0 − x∗‖2

]
, k = 0.

We can thus conclude that for any k ≥ 0,

vk ≤
(
1− 1

t

)k (
v0 +

σ

2
‖x0 − x∗‖2

)
,

which is the desired result (10.53).

10.8 Smoothing
61

10.8.1 Motivation

In Chapters 8 and 9 we considered methods for solving nonsmooth convex optimiza-
tion problems with complexity O(1/ε2), meaning that an order of 1/ε2 iterations
were required in order to obtain an ε-optimal solution. On the other hand, FISTA
requires O(1/

√
ε) iterations in order to find an ε-optimal solution of the composite

model
min
x∈E

f(x) + g(x), (10.58)

where f is Lf -smooth and convex and g is a proper closed and convex function. In
this section we will show how FISTA can be used to devise a method for more general
nonsmooth convex problems in an improved complexity of O(1/ε). In particular,
the model that will be considered includes an additional third term to (10.58):

min{f(x) + h(x) + g(x) : x ∈ E}. (10.59)

The function h will be assumed to be real-valued and convex; we will not assume
that it is easy to compute its prox operator (as is implicitly assumed on g), and
hence solving it directly using FISTA with smooth and nonsmooth parts taken as
(f, g + h) is not a practical solution approach. The idea will be to find a smooth
approximation of h, say h̃, and solve the problem via FISTA with smooth and
nonsmooth parts taken as (f + h̃, g). This simple idea will be the basis for the
improved O(1/ε) complexity. To be able to describe the method, we will need to
study in more detail the notions of smooth approximations and smoothability.

61The idea of producing an O(1/ε) complexity result for nonsmooth problems by employing an
accelerated gradient method was first presented and developed by Nesterov in [95]. The extension
presented in Section 10.8 to the three-part composite model and to the setting of more general
smooth approximations was developed by Beck and Teboulle in [20], where additional results and
extensions can also be found.
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10.8. Smoothing 305

10.8.2 Smoothable Functions and Smooth Approximations

Definition 10.43 (smoothable functions). A convex function h : E → R is
called (α, β)-smoothable (α, β > 0) if for any μ > 0 there exists a convex differ-
entiable function hμ : E → R such that the following holds:

(a) hμ(x) ≤ h(x) ≤ hμ(x) + βμ for all x ∈ E.

(b) hμ is α
μ -smooth.

The function hμ is called a 1
μ
-smooth approximation of h with parameters (α, β).

Example 10.44 (smooth approximation of ‖x‖2). Consider the function h :
Rn → R given by h(x) = ‖x‖2. For any μ > 0, define hμ(x) ≡

√
‖x‖22 + μ2 − μ.

Then for any x ∈ R
n,

hμ(x) =
√

‖x‖22 + μ2 − μ ≤ ‖x‖2 + μ− μ = ‖x‖2 = h(x),

h(x) = ‖x‖2 ≤
√

‖x‖22 + μ2 = hμ(x) + μ,

showing that property (a) in the definition of smoothable functions holds with
β = 1. To show that property (b) holds with α = 1, note that by Example 5.14,
the function ϕ(x) ≡

√
‖x‖22 + 1 is 1-smooth, and hence hμ(x) = μϕ(x/μ) − μ is

1
μ -smooth. We conclude that hμ is a 1

μ -smooth approximation of h with parameters

(1, 1). In the terminology described in Definition 10.43, we showed that h is (1, 1)-
smoothable.

Example 10.45 (smooth approximation of maxi{xi}). Consider the function
h : Rn → R given by h(x) = max{x1, x2, . . . , xn}. For any μ > 0, define the function

hμ(x) = μ log
(∑n

i=1 e
xi/μ

)
− μ logn.

Then for any x ∈ Rn,

hμ(x) = μ log

(
n∑
i=1

exi/μ

)
− μ logn

≤ μ log
(
nemaxi{xi}/μ

)
− μ logn = h(x), (10.60)

h(x) = max
i

{xi} ≤ μ log

(
n∑
i=1

exi/μ

)
= hμ(x) + μ logn. (10.61)

By Example 5.15, the function ϕ(x) = log(
∑n

i=1 e
xi) is 1-smooth, and hence the

function hμ(x) = μϕ(x/μ) − μ logn is 1
μ -smooth. Combining this with (10.60)

and (10.61), it follows that hμ is a 1
μ -smooth approximation of h with parameters

(1, logn). We conclude in particular that h is (1, logn)-smoothable.

The following result describes two important calculus rules of smooth approx-
imations.
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306 Chapter 10. The Proximal Gradient Method

Theorem 10.46 (calculus of smooth approximations).

(a) Let h1, h2 : E → R be convex functions, and let γ1, γ2 be nonnegative numbers.
Suppose that for a given μ > 0, hiμ is a 1

μ -smooth approximation of hi with pa-

rameters (αi, βi) for i = 1, 2. Then γ1h
1
μ+γ2h

2
μ is a 1

μ -smooth approximation

of γ1h
1 + γ2h

2 with parameters (γ1α1 + γ2α2, γ1β1 + γ2β2).

(b) Let A : E → V be a linear transformation between the Euclidean spaces E and
V. Let h : V → R be a convex function and define

q(x) ≡ h(A(x) + b),

where b ∈ V. Suppose that for a given μ > 0, hμ is a 1
μ -smooth approximation

of h with parameters (α, β). Then the function qμ(x) ≡ hμ(A(x) + b) is a
1
μ -smooth approximation of q with parameters(α‖A‖2, β).

Proof. (a) By its definition, hiμ (i = 1, 2) is convex, αi

μ -smooth and satisfies

hiμ(x) ≤ hi(x) ≤ hiμ(x)+βiμ for any x ∈ E. We can thus conclude that γ1h
1
μ+γ2h

2
μ

is convex and that for any x,y ∈ E,

γ1h
1
μ(x) + γ2h

2
μ(x) ≤ γ1h

1(x) + γ2h
2(x) ≤ γ1h

1
μ(x) + γ2h

2
μ(x) + (γ1β1 + γ2β2)μ,

as well as

‖∇(γ1h
1
μ + γ2h

2
μ)(x) − ∇(γ1h

1
μ + γ2h

2
μ)(y)‖ ≤ γ1‖∇h1μ(x)− ∇h1μ(y)‖

+γ2‖∇h2μ(x)− ∇h2μ(y)‖

≤ γ1
α1

μ
‖x− y‖+ γ2

α2

μ
‖x− y‖

=
γ1α1 + γ2α2

μ
‖x− y‖,

establishing the fact that γ1h
1
μ+ γ2h

2
μ is a 1

μ -smooth approximation of γ1h
1 + γ2h

2

with parameters (γ1α1 + γ2α2, γ1β1 + γ2β2).
(b) Since hμ is a 1

μ -smooth approximation of h with parameters (α, β), it
follows that hμ is convex, αμ -smooth and for any y ∈ V,

hμ(y) ≤ h(y) ≤ hμ(y) + βμ. (10.62)

Let x ∈ E. Plugging y = A(x) + b into (10.62), we obtain that

qμ(x) ≤ q(x) ≤ qμ(x) + βμ. (10.63)

In addition, by the α
μ -smoothness of hμ, we have for any x,y ∈ E,

‖∇qμ(x)− ∇qμ(y)‖ = ‖AT∇hμ(A(x) + b)− AT∇hμ(A(y) + b)‖
≤ ‖AT ‖ · ‖∇hμ(A(x) + b)− ∇hμ(A(y) + b)‖

≤ α

μ
‖AT ‖ · ‖A(x) + b− A(y) − b‖

≤ α

μ
‖AT ‖ · ‖A‖ · ‖x− y‖

=
α‖A‖2
μ

‖x− y‖,

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



10.8. Smoothing 307

where the last equality follows by the fact that ‖A‖ = ‖AT ‖ (see Section 1.14). We

have thus shown that the convex function hμ is α‖A‖2
μ -smooth and satisfies (10.63)

for any x ∈ E, establishing the desired result.

A direct result of Theorem 10.46 is the following corollary stating the preser-
vation of smoothability under nonnegative linear combinations and affine transfor-
mations of variables.

Corollary 10.47 (operations preserving smoothability).

(a) Let h1, h2 : E → R be convex functions which are (α1, β1)- and (α2, β2)-
smoothable, respectively, and let γ1, γ2 be nonnegative numbers. Then γ1h

1 +
γ2h

2 is a (γ1α1 + γ2α2, γ1β1 + γ2β2)-smoothable function.

(b) Let A : E → V be a linear transformation between the Euclidean spaces E and
V. Let h : V → R be a convex (α, β)-smoothable function and define

q(x) ≡ h(A(x) + b),

where b ∈ V. Then q is (α‖A‖2, β)-smoothable.

Example 10.48 (smooth approximation of ‖Ax + b‖2). Let q : Rn → R be
given by q(x) = ‖Ax+b‖2, where A ∈ R

m×n and b ∈ R
m. Then q(x) = g(Ax+b),

where g : Rm → R is given by g(y) = ‖y‖2. Let μ > 0. By Example 10.44,
gμ(y) =

√
‖y‖22 + μ2 − μ is a 1

μ -smooth approximation of g with parameters (1, 1),

and hence, by Theorem 10.46(b),

qμ(x) ≡ gμ(Ax + b) =
√

‖Ax+ b‖22 + μ2 − μ

is a 1
μ -smooth approximation of q with parameters (‖A‖22,2, 1).

Example 10.49 (smooth approximation of piecewise affine functions). Let
q : Rn → R be given by q(x) = maxi=1,...,m{aTi x + bi}, where ai ∈ R

n and bi ∈ R

for any i = 1, 2, . . . ,m. Then q(x) = g(Ax+b), where g(y) = max{y1, y2, . . . , ym},
A is the matrix whose rows are aT1 , a

T
2 , . . . , a

T
m, and b = (b1, b2, . . . , bm)T . Let

μ > 0. By Example 10.45, gμ(y) = μ log
(∑m

i=1 e
yi/μ

)
− μ logm is a 1

μ -smooth

approximation of g with parameters (1, logm). Therefore, by Theorem 10.46(b),
the function

qμ(x) ≡ gμ(Ax+ b) = μ log

(
m∑
i=1

e(a
T
i x+bi)/μ

)
− μ logm

is a 1
μ -smooth approximation of q with parameters (‖A‖22,2, logm).

Example 10.50 (tightness of the smoothing parameters). Consider the
absolute value function q : R → R given by q(x) = |x|. By Example 10.44, for any

μ > 0 the function
√
x2 + μ2−μ is a 1

μ -smooth approximation of q with parameters

(1, 1). Let us consider an alternative way to construct a smooth approximation of
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308 Chapter 10. The Proximal Gradient Method

q using Theorem 10.46. Note that q(x) = max{x,−x}. Thus, by Example 10.49
the function qμ(x) = μ log(ex/μ + e−x/μ) − μ log 2 is a 1

μ -smooth approximation

of q with parameters (‖A‖22,2, log 2), where A =
(

1

−1

)
. Since ‖A‖22,2 = 2, we

conclude that qμ is a 1
μ -smooth approximation of q with parameters (2, log 2). The

question that arises is whether these parameters are tight, meaning whether they are
the smallest ones possible. The β-parameter is indeed tight (since limx→∞ q(x) −
qμ(x) = μ log(2)); however, the α-parameter is not tight. To see this, note that for
any x ∈ R,

q′′1 (x) =
4

(ex + e−x)2
.

Therefore, for any x ∈ R, it holds that |q′′1 (x)| ≤ 1, and hence, by Theorem 5.12, q1
is 1-smooth. Consequently, qμ, which can also be written as qμ(x) = μq1(x/μ), is
1
μ -smooth. We conclude that qμ, is a

1
μ -smooth approximation of q with parameters

(1, log 2).

10.8.3 The Moreau Envelope Revisited

A natural 1
μ -smooth approximation of a given real-valued convex function h : E → R

is its Moreau envelopeMμ
h , which was discussed in detail in Section 6.7. Recall that

the Moreau envelope of h is given by

Mμ
h (x) = min

u∈E

{
h(u) +

1

2μ
‖x− u‖2

}
.

We will now show that whenever h is in addition Lipschitz, the Moreau envelope is
indeed a 1

μ -smooth approximation.

Theorem 10.51 (smoothability of real-valued Lipschitz convex functions).
Let h : E → R be a convex function satisfying

|h(x) − h(y)| ≤ 
h‖x− y‖ for all x,y ∈ E.

Then for any μ > 0, Mμ
h is a 1

μ -smooth approximation of h with parameters (1,
2h
2 ).

Proof. By Theorem 6.60, Mμ
h is 1

μ -smooth. For any x ∈ E,

Mμ
h (x) = min

u∈E

{
h(u) +

1

2μ
‖u− x‖2

}
≤ h(x) +

1

2μ
‖x− x‖2 = h(x).

Let gx ∈ ∂h(x). Since h is Lipschitz with constant 
h, it follows by Theorem 3.61
that ‖gx‖ ≤ 
h, and hence

Mμ
h (x)− h(x) = min

u∈E

{
h(u)− h(x) +

1

2μ
‖u− x‖2

}
≥ min

u∈E

{
〈gx,u− x〉+ 1

2μ
‖u− x‖2

}
= −μ

2
‖gx‖2

≥ − 

2
h

2
μ,
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10.8. Smoothing 309

where the subgradient inequality was used in the first inequality. To summarize, we
obtained that the convex function Mμ

h is 1
μ -smooth and satisfies

Mμ
h (x) ≤ h(x) ≤ Mμ

h (x) +

2h
2
μ,

showing that Mμ
h is a 1

μ -smooth approximation of h with parameters (1,
2h
2 ).

Corollary 10.52. Let h : E → R be convex and Lipschitz with constant 
h. Then

h is (1,
2h
2 )-smoothable.

Example 10.53 (smooth approximation of the l2-norm). Consider the func-
tion h : Rn → R given by h(x) = ‖x‖2. Then h is convex and Lipschitz with
constant 
h = 1. Hence, by Theorem 10.51, for any μ > 0, the function (see
Example 6.54)

Mμ
h (x) = Hμ(x) =

⎧⎪⎨⎪⎩
1
2μ‖x‖22, ‖x‖2 ≤ μ,

‖x‖2 − μ
2 , ‖x‖2 > μ,

is a 1
μ -smooth approximation of h with parameters (1, 12 ).

Example 10.54 (smooth approximation of the l1-norm). Consider the func-
tion h : Rn → R given by h(x) = ‖x‖1. Then h is convex and Lipschitz with
constant 
h =

√
n. Hence, by Theorem 10.51, for any μ > 0, the Moreau envelope

of h given by

Mμ
h (x) =

n∑
i=1

Hμ(xi)

is a 1
μ -smooth approximation of h with parameters (1, n2 ).

Example 10.55 (smooth approximations of the absolute value function).
Let us consider again the absolute value function h(x) = |x|. In our discussions we
actually considered three possible 1

μ -smooth approximations of h, which are detailed
below along with their parameters:

• (Example 10.44) h1μ(x) =
√
x2 + μ2 − μ, (α, β) = (1, 1).

• (Example 10.50) h2μ(x) = μ log(ex/μ + e−x/μ)− μ log 2, (α, β) = (1, log 2).

• (Example 10.53) h3μ(x) = Hμ(x), (α, β) = (1, 12 ).

Obviously, the Huber function is the best 1
μ -smooth approximation out of the three

functions since all the functions have the same α-parameter, but h3μ has the small-
est β-parameter. This phenomenon is illustrated in Figure 10.3, where the three
functions are plotted (for the case μ = 0.2).
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310 Chapter 10. The Proximal Gradient Method
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log-exp
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–0.5–1–2

|x|

Figure 10.3. The absolute value function along with its three 5-smooth
approximations (μ = 0.2). “squared-based” is the function h1μ(x) =

√
x2 + μ2 − μ,

“log-exp” is h2μ(x) = μ log(ex/μ + e−x/μ)− μ log 2, and “Huber” is h3μ(x) = Hμ(x).

10.8.4 The S-FISTA Method

The optimization model that we consider is

min
x∈E

{H(x) ≡ f(x) + h(x) + g(x)}, (10.64)

where the following assumptions are made.

Assumption 10.56.

(A) f : E → R is Lf -smooth (Lf ≥ 0).

(B) h : E → R is (α, β)-smoothable (α, β > 0). For any μ > 0, hμ denotes a
1
μ -smooth approximation of h with parameters (α, β).

(C) g : E → (−∞,∞] is proper closed and convex.

(D) H has bounded level sets. Specifically, for any δ > 0, there exists Rδ > 0 such
that

‖x‖ ≤ Rδ for any x satisfying H(x) ≤ δ.

(E) The optimal set of problem (10.64) is nonempty and denoted by X∗. The
optimal value of the problem is denoted by Hopt.

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



10.8. Smoothing 311

Assumption (E) is actually a consequence of assumptions (A)–(D). The idea
is to consider the smoothed version of (10.64),

min
x∈E

{Hμ(x) ≡ f(x) + hμ(x)︸ ︷︷ ︸
Fμ(x)

+g(x)}, (10.65)

for some smoothing parameter μ > 0, and solve it using an accelerated method with
convergence rate of O(1/k2) in function values. Actually, any accelerated method
can be employed, but we will describe the version in which FISTA with constant
stepsize is employed on (10.65) with the smooth and nonsmooth parts taken as Fμ
and g, respectively. The method is described in detail below. Note that a Lipschitz
constant of the gradient of Fμ is Lf +

α
μ , and thus the stepsize is taken as 1

Lf+
α
μ
.

S-FISTA

Input: x0 ∈ dom(g), μ > 0.
Initialization: set y0 = x0, t0 = 1; construct hμ—a 1

μ -smooth approximation of

h with parameters (α, β); set Fμ = f + hμ, L̃ = Lf +
α
μ .

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) set xk+1 = prox 1
L̃
g

(
yk − 1

L̃
∇Fμ(yk)

)
;

(b) set tk+1 =
1+

√
1+4t2k
2 ;

(c) compute yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

The next result shows how, given an accuracy level ε > 0, the parameter μ
can be chosen to ensure that an ε-optimal solution of the original problem (10.64)
is reached in O(1/ε) iterations.

Theorem 10.57 (O(1/ε) complexity of S-FISTA). Suppose that Assumption
10.56 holds. Let ε ∈ (0, ε̄) for some fixed ε̄ > 0. Let {xk}k≥0 be the sequence
generated by S-FISTA with smoothing parameter

μ =

√
α

β

ε√
αβ +

√
αβ + Lfε

.

Then for any k satisfying

k ≥ 2
√
2αβΓ

1

ε
+
√
2LfΓ

1√
ε
,

where Γ = (RH(x0)+ ε̄
2
+ ‖x0‖)2, it holds that H(xk)−Hopt ≤ ε.

Proof. By definition of S-FISTA, {xk}k≥0 is the sequence generated by FISTA
employed on problem (10.65) with input (Fμ, g,x

0). Note that

argminx∈EHμ(x) = argminx∈E
{
Hμ(x) : Hμ(x) ≤ Hμ(x

0)
}
. (10.66)
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312 Chapter 10. The Proximal Gradient Method

Since Hμ is closed, the feasible set C ≡ {x ∈ E : Hμ(x) ≤ Hμ(x
0)} of the right-hand

side problem in (10.66) is closed. We will show that it is also bounded. Indeed, since
hμ is a 1

μ -smooth approximation of h with parameters (α, β), it follows in particular

that h(x) ≤ hμ(x) + βμ for all x ∈ E, and consequently H(x) ≤ Hμ(x) + βμ for all
x ∈ E. Thus,

C ⊆ {x ∈ E : H(x) ≤ Hμ(x
0) + βμ},

which by Assumption 10.56(D) implies that C is bounded and hence, by its closed-
ness, also compact. We can therefore conclude by Weierstrass theorem for closed
functions (Theorem 2.12) that an optimal solution of problem (10.65) is attained
at some point x∗μ with an optimal value Hμ,opt. By Theorem 10.34, since Fμ is
(Lf +

α
μ )-smooth,

Hμ(x
k)−Hμ,opt ≤ 2

(
Lf +

α

μ

) ‖x0 − x∗μ‖2

(k + 1)2
= 2

(
Lf +

α

μ

)
Λ

(k + 1)2
, (10.67)

where Λ = ‖x0 −x∗μ‖2. We use again the fact that hμ is a 1
μ -smooth approximation

of h with parameters (α, β), from which it follows that for any x ∈ E,

Hμ(x) ≤ H(x) ≤ Hμ(x) + βμ. (10.68)

In particular, the following two inequalities hold:

Hopt ≥ Hμ,opt and H(xk) ≤ Hμ(x
k) + βμ, k = 0, 1, . . . , (10.69)

which, combined with (10.67), yields

H(xk)−Hopt ≤ Hμ(x
k) + βμ−Hμ,opt ≤ 2Lf

Λ

(k + 1)2
+

(
2αΛ

(k + 1)2

)
1

μ
+ βμ

≤ 2Lf
Λ

k2
+

(
2αΛ

k2

)
1

μ
+ βμ.

Therefore, for a given K > 0, it holds that for any k ≥ K,

H(xk)−Hopt ≤ 2Lf
Λ

K2
+

(
2αΛ

K2

)
1

μ
+ βμ. (10.70)

Minimizing the right-hand side w.r.t. μ, we obtain

μ =

√
2αΛ

β

1

K
. (10.71)

Plugging the above expression into (10.70), we conclude that for any k ≥ K,

H(xk)−Hopt ≤ 2Lf
Λ

K2
+ 2

√
2αβΛ

1

K
.

Thus, to guarantee that xk is an ε-optimal solution for any k ≥ K, it is enough
that K will satisfy

2Lf
Λ

K2
+ 2

√
2αβΛ

1

K
≤ ε.
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10.8. Smoothing 313

Denoting t =
√
2Λ
K , the above inequality reduces to

Lf t
2 + 2

√
αβt− ε ≤ 0,

which, by the fact that t > 0, is equivalent to
√
2Λ

K
= t ≤

−
√
αβ +

√
αβ + Lfε

Lf
=

ε√
αβ +

√
αβ + Lfε

.

We conclude that K should satisfy

K ≥
√
2Λαβ +

√
2Λαβ + 2ΛLfε

ε
.

In particular, if we choose

K = K1 ≡
√
2Λαβ +

√
2Λαβ + 2ΛLfε

ε

and μ according to (10.71), meaning that

μ =

√
2αΛ

β

1

K1
=

√
α

β

ε√
αβ +

√
αβ + Lfε

,

then for any k ≥ K1 it holds that H(xk)−Hopt ≤ ε. By (10.68) and (10.69),

H(x∗μ)− βμ ≤ Hμ(x
∗
μ) = Hμ,opt ≤ Hopt ≤ H(x0),

which along with the inequality

μ =

√
α

β

ε√
αβ +

√
αβ + Lfε

≤
√
α

β

ε√
αβ +

√
αβ

≤ ε̄

2β

implies thatH(x∗μ) ≤ H(x0)+ ε̄
2 , and hence, by Assumption 10.56(D), it follows that

‖x∗μ‖ ≤ Rδ, where δ = H(x0) + ε̄
2 . Therefore, Λ = ‖x∗μ − x0‖2 ≤ (Rδ + ‖x0‖)2 = Γ.

Consequently,

K1 =

√
2Λαβ +

√
2Λαβ + 2ΛLfε

ε
√
γ+δ≤√γ+

√
δ ∀γ,δ≥0

≤
2
√
2Λαβ +

√
2ΛLfε

ε

≤
2
√
2Γαβ +

√
2ΓLfε

ε
≡ K2,

and hence for any k ≥ K2, we have that H(xk)−Hopt ≤ ε, establishing the desired
result.

Remark 10.58. Note that the smoothing parameter chosen in Theorem 10.57 does
not depend on Γ, although the number of iterations required to obtain an ε-optimal
solution does depend on Γ.

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



314 Chapter 10. The Proximal Gradient Method

Example 10.59. Consider the problem

min
x∈E

{h(x) : x ∈ C}, (10.72)

where C is a nonempty closed and convex set and h : E → R is convex function,
which is Lipschitz with constant 
h. Problem (10.72) fits model (10.64) with f ≡ 0
and g = δC . By Theorem 10.51, for any μ > 0 the Moreau envelope Mμ

h is a
1
μ -smooth approximation of h with parameters (α, β) = (1,

2h
2 ). In addition, by

Theorem 6.60, ∇Mμ
h (x) =

1
μ (x− proxμh(x)). We will pick hμ =Mμ

h , and therefore

Fμ = f +Mμ
h = Mμ

h . By Theorem 10.57, after employing O(1/ε) iterations of the
S-FISTA method with (recalling that Lf = 0)

μ =

√
α

β

ε√
αβ +

√
αβ + Lfε

=

√
α

β

ε√
αβ +

√
αβ

=
ε

2β
=

ε


2h
,

an ε-optimal solution will be achieved. The stepsize is 1
L̃
, where L̃ = α

μ = 1
μ . The

main update step of S-FISTA has the following form:

xk+1 = prox 1
L̃
g

(
yk − 1

L̃
∇Fμ(yk)

)
= PC

(
yk − 1

L̃μ
(yk − proxμh(y

k))

)
= PC(proxμh(y

k)).

The S-FISTA method for solving (10.72) is described below.

S-FISTA for solving (10.72)

Initialization: set y0 = x0 ∈ C, t0 = 1, μ = ε
2h
, and L̃ =

2h
ε .

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) xk+1 = PC(proxμh(y
k));

(b) tk+1 =
1+

√
1+4t2k
2 ;

(c) yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

Example 10.60. Consider the problem

(P) min
x∈Rn

{
1

2
‖Ax− b‖22 + ‖Dx‖1 + λ‖x‖1

}
,

where A ∈ Rm×n,b ∈ Rm,D ∈ Rp×n, and λ > 0. Problem (P) fits model (10.64)
with f(x) = 1

2‖Ax − b‖22, h(x) = ‖Dx‖1, and g(x) = λ‖x‖1. Assumption 10.56
holds: f is convex and Lf -smooth with Lf = ‖ATA‖2,2 = ‖A‖22,2, g is proper closed
and convex, h is real-valued and convex, and the level sets of the objective function
are bounded. To show that h is smoothable, and to find its parameters, note that
h(x) = q(Dx), where q : Rp → R is given by q(y) = ‖y‖1. By Example 10.54, for
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10.9. Non-Euclidean Proximal Gradient Methods 315

any μ > 0, qμ(y) = Mμ
q (y) =

∑p
i=1Hμ(yi) is a

1
μ -smooth approximation of q with

parameters (1, p2 ). By Theorem 10.46(b), qμ(Dx) is a 1
μ -smooth approximation of

h with parameters (α, β) = (‖D‖22,2, p2 ), and we will set hμ(x) = Mμ
q (Dx) and

Fμ(x) = f(x) + hμ(x). Therefore, invoking Theorem 10.57, to obtain an ε-optimal
solution of problem (P), we need to employ the S-FISTA method with

μ =

√
α

β

ε√
αβ +

√
αβ + Lfε

=
2‖D‖2,2√

p
· ε√

‖D‖22,2p+
√

‖D‖22,2p+ 2‖ATA‖2,2ε
. (10.73)

Since Fμ(x) = f(x) +Mμ
q (Dx), it follows that

∇Fμ(x) = ∇f(x) +DT∇Mμ
q (Dx)

= ∇f(x) + 1
μD

T (Dx− proxμq(Dx)) [Theorem 6.60]

= ∇f(x) + 1
μD

T (Dx− Tμ(Dx)). [Example 6.8]

Below we write the S-FISTA method for solving problem (P) for a given tolerance
parameter ε > 0.

S-FISTA for solving (P)

Initialization: set y0 = x0 ∈ R
n, t0 = 1; set μ as in (10.73) and L̃ =

‖A‖22,2 +
‖D‖22,2
μ .

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) xk+1 = Tλ/L̃
(
yk − 1

L̃
(AT (Ayk − b) + 1

μD
T (Dyk − Tμ(Dyk)))

)
;

(b) tk+1 =
1+

√
1+4t2k
2 ;

(c) yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

It is interesting to note that in the case of problem (P) we can actually compute
the constant Γ that appears in Theorem 10.57. Indeed, if H(x) ≤ α, then

λ‖x‖1 ≤ 1

2
‖Ax− b‖22 + ‖Dx‖1 + λ‖x‖1 ≤ α,

and since ‖x‖2 ≤ ‖x‖1, it follows that Rα can be chosen as α
λ , from which Γ can be

computed.

10.9 Non-Euclidean Proximal Gradient Methods
In this section, and in this section only, the underlying space will not be assumed to
be Euclidean. We will consider two different approaches for handling this situation.
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316 Chapter 10. The Proximal Gradient Method

The first tackles unconstrained smooth problems through a variation of the gradient
method, and the second, which is aimed at solving the composite model, is based
on replacing the Euclidean prox operator by a mapping based on the Bregman
distance.

10.9.1 The Non-Euclidean Gradient Method

Consider the unconstrained problem

min{f(x) : x ∈ E}, (10.74)

where we assume that f is Lf -smooth w.r.t. the underlying norm. Recall that the
gradient method (see Section 10.2) has the form

xk+1 = xk − tk∇f(xk). (10.75)

As was already discussed in Section 9.1 (in the context of the mirror descent
method), this scheme has a “philosophical” flaw since xk ∈ E while ∇f(xk) ∈ E∗.
Obviously, as the only difference between E and E∗ in this book is their underlying
norm, there is no practical problem to invoke the scheme (10.75). Nonetheless, we
will change the scheme (10.75) and replace ∇f(xk) ∈ E∗ with a “primal counter-
part” in E. For any vector a ∈ E

∗, we define the set of primal counterparts of a
as

Λa = argmaxv∈E{〈a,v〉 : ‖v‖ ≤ 1}. (10.76)

The lemma below presents some elementary properties of Λa that follow immedi-
ately by its definition and the definition of the dual norm.

Lemma 10.61 (basic properties of the set of primal counterparts). Let
a ∈ E∗.

(a) If a 
= 0, then ‖a†‖ = 1 for any a† ∈ Λa.

(b) If a = 0, then Λa = B‖·‖[0, 1].

(c) 〈a, a†〉 = ‖a‖∗ for any a† ∈ Λa.

We also note that by the conjugate subgradient theorem (Corollary 4.21),

Λa = ∂h(a), where h(·) = ‖ · ‖∗.

Example 10.62. Suppose that E = Rn endowed with the Euclidean l2-norm. In
this case, for any a 
= 0,

Λa =

{
a

‖a‖2

}
.

Example 10.63. Suppose that E = Rn endowed with the l1-norm. In this case,
for any a 
= 0, by Example 3.52,

Λa = ∂‖ · ‖∞(a) =

⎧⎨⎩ ∑
i∈I(a)

λisgn(ai)ei :
∑
i∈I(a)

λi = 1, λj ≥ 0, j ∈ I(a)

⎫⎬⎭ ,

where I(a) = argmaxi=1,2,...,n|ai|.
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10.9. Non-Euclidean Proximal Gradient Methods 317

Example 10.64. Suppose that E = Rn endowed with the l∞-norm. For any a 
= 0,
Λa = ∂h(a), where h(·) = ‖ · ‖1. Then, by Example 3.41,

Λa = {z ∈ R
n : zi = sgn(ai), i ∈ I=(a), |zj | ≤ 1, j ∈ I0(a)} ,

where

I=(a) = {i ∈ {1, 2, . . . , n} : ai 
= 0}, I0(a) = {i ∈ {1, 2, . . . , n} : ai = 0}.

We are now ready to present the non-Euclidean gradient method in which the
gradient ∇f(xk) is replaced by a primal counterpart ∇f(xk)† ∈ Λ∇f(xk).

The Non-Euclidean Gradient Method

Initialization: pick x0 ∈ E arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick ∇f(xk)† ∈ Λ∇f(xk) and Lk > 0;

(b) set xk+1 = xk − ‖∇f(xk)‖∗
Lk

∇f(xk)†.

We begin by establishing a sufficient decrease property. The proof is almost
identical to the proof of Lemma 10.4.

Lemma 10.65 (sufficient decrease for the non-Euclidean gradient method).
Let f : E → R be an Lf -smooth function, and let {xk}k≥0 be the sequence generated
by the non-Euclidean gradient method. Then for any k ≥ 0,

f(xk)− f(xk+1) ≥
Lk − Lf

2

L2
k

‖∇f(xk)‖2∗. (10.77)

Proof. By the descent lemma (Lemma 5.7) we have

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+ Lf
2

‖xk+1 − xk‖2

= f(xk)− ‖∇f(xk)‖∗
Lk

〈∇f(xk),∇f(xk)†〉+ Lf‖∇f(xk)‖2∗
2L2

k

(∗)
= f(xk)− ‖∇f(xk)‖2∗

Lk
+
Lf‖∇f(xk)‖2∗

2L2
k

= f(xk)−
Lk − Lf

2

L2
k

‖∇f(xk)‖2∗,

where (∗) follows by Lemma 10.61(c).

Similarly to Section 10.3.3, we will consider both constant and backtracking
stepsize strategies. In addition, we will also consider an exact line search proce-
dure.
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318 Chapter 10. The Proximal Gradient Method

• Constant. Lk = L̄ ∈
(
Lf

2 ,∞
)
for all k.

• Backtracking procedure B4. The procedure requires three parame-
ters (s, γ, η), where s > 0, γ ∈ (0, 1), and η > 1. The choice of Lk is done
as follows: First, Lk is set to be equal to the initial guess s. Then, while

f(xk)− f

(
xk − ‖∇f(xk)‖∗

Lk
∇f(xk)†

)
<

γ

Lk
‖∇f(xk)‖2∗,

we set Lk := ηLk. In other words, Lk is chosen as Lk = sηik , where ik
is the smallest nonnegative integer for which the condition

f(xk)− f

(
xk − ‖∇f(xk)‖∗

sηik
∇f(xk)†

)
≥ γ

sηik
‖∇f(xk)‖2∗

is satisfied.

• Exact line search. Lk is chosen as

Lk ∈ argminL>0f

(
xk − ‖∇f(xk)‖∗

L
∇f(xk)†

)
.

By the same arguments given in Remark 10.13, it follows that if the back-
tracking procedure B4 is used, then

Lk ≤ max

{
s,

ηLf
2(1− γ)

}
. (10.78)

Convergence Analysis in the Nonconvex Case

The statements and proofs of the next two results (Lemma 10.66 and Theorem
10.67) are similar those of Lemma 10.14 and Theorem 10.15.

Lemma 10.66 (sufficient decrease of the non-Euclidean gradient method).
Let f be an Lf -smooth function. Let {xk}k≥0 be the sequence generated by the
non-Euclidean gradient method for solving problem (10.74) with either a constant

stepsize corresponding to Lk = L̄ ∈
(Lf

2 ,∞
)
; a stepsize chosen by the backtracking

procedure B4 with parameters (s, γ, η) satisfying s > 0, γ ∈ (0, 1), η > 1; or an exact
line search for computing the stepsize. Then for any k ≥ 0,

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2∗, (10.79)

where

M =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L̄−
Lf
2

(L̄)
2 , constant stepsize,

γ

max
{
s,

ηLf
2(1−γ)

} , backtracking,

1
2Lf

, exact line search.

(10.80)
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10.9. Non-Euclidean Proximal Gradient Methods 319

Proof. The result for the constant stepsize setting follows by plugging Lk = L̄
in (10.77). If Lk is chosen by the exact line search procedure, then, in particular,

f(xk+1) ≤ f(x̃k), where x̃k = xk − ‖∇f(xk)‖∗
Lf

∇f(xk)†, and hence

f(xk)− f(xk+1) ≥ f(xk)− f(x̃k) ≥ 1

2Lf
‖∇f(xk)‖2∗,

where we used the result already established for the constant stepsize in the second
inequality. As for the backtracking procedure, by its definition and the upper bound
(10.78) on Lk we have

f(xk)− f(xk+1) ≥ γ

Lk
‖∇f(xk)‖2∗ ≥

γ

max
{
s,

ηLf

2(1−γ)

}‖∇f(xk)‖2∗.

Theorem 10.67 (convergence of the non-Euclidean gradient method—
nonconvex case). Suppose that f is an Lf -smooth function. Let {xk}k≥0 be the
sequence generated by the non-Euclidean gradient method for solving the problem

min
x∈E

f(x) (10.81)

with either a constant stepsize corresponding to Lk = L̄ ∈
(Lf

2 ,∞
)
; a stepsize

chosen by the backtracking procedure B4 with parameters (s, γ, η) satisfying s >
0, γ ∈ (0, 1), η > 1; or an exact line search for computing the stepsize. Then

(a) the sequence {f(xk)}k≥0 is nonincreasing; in addition, f(xk+1) < f(xk) if
and only if ∇f(xk) 
= 0;

(b) if the sequence {f(xk)}k≥0 is bounded below, then ∇f(xk) → 0 as k → ∞;

(c) if the optimal value of (10.81) is finite and equal to fopt, then

min
n=0,1,...,k

‖∇f(xk)‖∗ ≤
√
f(x0)− fopt√
M(k + 1)

, (10.82)

where M is given in (10.80);

(d) all limit points of the sequence {xk}k≥0 are stationary points of problem
(10.81).

Proof. (a) By Lemma 10.66,

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2∗, (10.83)

whereM > 0 is given in (10.80). The inequality (10.83) readily implies that f(xk) ≥
f(xk+1) and that if ∇f(xk) 
= 0, then f(xk+1) < f(xk). Finally, if ∇f(xk) = 0,
then xk = xk+1, and hence f(xk) = f(xk+1).

(b) Since the sequence {f(xk)}k≥0 is nonincreasing and bounded below, it
converges. Thus, in particular f(xk) − f(xk+1) → 0 as k → ∞, which, combined
with (10.83), implies that ∇f(xk) → 0 as k → ∞.
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320 Chapter 10. The Proximal Gradient Method

(c) By Lemma 10.66, for any n ≥ 0,

f(xn)− f(xn+1) ≥M‖∇f(xn)‖2∗.

Summing the above over n = 0, 1, . . . , k, we obtain

f(x0)− f(xk+1) ≥ M

k∑
n=0

‖∇f(xn)‖2∗ ≥ (k + 1)M min
n=0,1,...,k

‖∇f(xn)‖2∗.

Using the fact that f(xk+1) ≥ fopt, the inequality (10.82) follows.
(d) Let x̄ be a limit point of {xk}k≥0. Then there exists a subsequence

{xkj}j≥0 converging to x̄. For any j ≥ 0,

‖∇f(x̄)‖∗ ≤ ‖∇f(xkj )− ∇f(x̄)‖∗ + ‖∇f(xkj )‖∗ ≤ Lf‖xkj − x̄‖+ ‖∇f(xkj )‖∗.
(10.84)

Since the right-hand side of (10.84) goes to 0 as j → ∞, it follows that ∇f(x̄)
= 0.

Convergence Analysis in the Convex Case

To establish a rate of convergence in the case where f is convex, we will require an
additional boundedness-type assumption. We gather all the required assumptions
in the following.

Assumption 10.68.

(A) f : E → R is Lf -smooth and convex.

(B) The optimal set of the problem

min
x∈E

f(x)

is nonempty and denoted by X∗. The optimal value is denoted by fopt.

(C) For any α > 0, there exists Rα > 0 such that

max
x,x∗ {‖x

∗ − x‖ : f(x) ≤ α,x∗ ∈ X∗} ≤ Rα.

The proof of the convergence rate is based on the following very simple lemma.

Lemma 10.69. Suppose that Assumption 10.68 holds. Let {xk}k≥0 be the sequence
generated by the non-Euclidean gradient method for solving the problem of minimiz-
ing f over E with either a constant stepsize corresponding to Lk = L̄ ∈

(Lf

2 ,∞
)
; a

stepsize chosen by the backtracking procedure B4 with parameters (s, γ, η) satisfying
s > 0, γ ∈ (0, 1), η > 1; or an exact line search for computing the stepsize. Then

f(xk)− f(xk+1) ≥ 1

C
(f(xk)− fopt)

2, (10.85)
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10.9. Non-Euclidean Proximal Gradient Methods 321

where

C =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
R2

αL̄
2

L̄−
Lf
2

, constant stepsize,

R2
α

γ max
{
s,

ηLf

2(1−γ)

}
, backtracking,

2R2
αLf , exact line search,

(10.86)

with α = f(x0).

Proof. Note that, by Theorem 10.67(a), {f(xk)}k≥0 is nonincreasing, and in par-
ticular for any k ≥ 0 it holds that f(xk) ≤ f(x0). Therefore, for any x∗ ∈ X∗ and
k ≥ 0,

‖xk − x∗‖ ≤ Rα,

where α = f(x0). To prove (10.85), we note that on the one hand, by Lemma 10.66,

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2∗, (10.87)

where M is given in (10.80). On the other hand, by the gradient inequality along
with the generalized Cauchy–Schwarz inequality (Lemma 1.4), for any x∗ ∈ X∗,

f(xk)− fopt = f(xk)− f(x∗)

≤ 〈∇f(xk),xk − x∗〉
≤ ‖∇f(xk)‖∗‖xk − x∗‖
≤ Rα‖∇f(xk)‖∗. (10.88)

Combining (10.87) and (10.88), we obtain that

f(xk)− f(xk+1) ≥M‖∇f(xk)‖2∗ ≥
M

R2
α

(f(xk)− fopt)
2.

Plugging the expression for M given in (10.80) into the above inequality, the result
(10.85) is established.

To derive the rate of convergence in function values, we will use the following
lemma on convergence of nonnegative scalar sequences.

Lemma 10.70. Let {ak}k≥0 be a sequence of nonnegative real numbers satisfying
for any k ≥ 0

ak − ak+1 ≥ 1

γ
a2k

for some γ > 0. Then for any k ≥ 1,

ak ≤ γ

k
. (10.89)

Proof. Let k be a positive integer. If ak = 0, then obviously (10.89) holds. Suppose
that ak > 0. Then by the monotonicity of {an}n≥0, we have that a0, a1, . . . , ak > 0.
For any n = 1, 2, . . . , k,

1

an
− 1

an−1
=
an−1 − an
an−1an

≥ 1

γ

a2n−1
an−1an

=
1

γ

an−1
an

≥ 1

γ
, (10.90)
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322 Chapter 10. The Proximal Gradient Method

where the last inequality follows from the monotonicity of the sequence. Summing
(10.90) over n = 1, 2, . . . , k, we obtain

1

ak
≥ 1

a0
+
k

γ
≥ k

γ
,

proving (10.89).

Combining Lemmas 10.69 and 10.70, we can establish an O(1/k) rate of con-
vergence in function values of the sequence generated by the non-Euclidean gradient
method.

Theorem 10.71 (O(1/k) rate of convergence of the non-Euclidean gradi-
ent method). Under the setting of Lemma 10.69, for any k ≥ 1,

f(xk)− fopt ≤
C

k
, (10.91)

where C is given in (10.86).

Proof. By Lemma 10.69,

ak − ak+1 ≥ 1

C
a2k,

where ak = f(xk)−fopt. Invoking Lemma 10.70 with γ = C, the inequality ak ≤ C
k ,

which is the same as (10.91), follows.

Remark 10.72. When a constant stepsize 1
Lf

is used (meaning that Lk ≡ L̄ ≡ Lf ),

(10.91) has the form

f(xk)− fopt ≤
2R2

αLf
k

,

which is similar in form to the result in the Euclidean setting in which the following
bound was derived (see Theorem 10.21):

f(xk)− fopt ≤
Lf‖x0 − x∗‖2

2k
.

The Non-Euclidean Gradient Method in Rn Endowed with the l1-Norm

Example 10.73. Suppose that the underlying space is R
n endowed with the l1-

norm, and let f be an Lf -smooth function w.r.t. the l1-norm. Recall (see Example
10.63) that the set of primal counterparts in this case is given for any a 
= 0 by

Λa =

⎧⎨⎩ ∑
i∈I(a)

λisgn(ai)ei :
∑
i∈I(a)

λi = 1, λj ≥ 0, j ∈ I(a)

⎫⎬⎭ ,

where I(a) = argmaxi=1,2,...,n|ai|. When employing the method, we can always

choose a† = sgn(ai)ei for some arbitrary i ∈ I(a). The method thus takes the
following form:
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10.9. Non-Euclidean Proximal Gradient Methods 323

Non-Euclidean Gradient under the l1-Norm

• Initialization: pick x0 ∈ Rn.

• General step: for any k = 0, 1, 2, . . . execute the following steps:

– pick ik ∈ argmaxi

∣∣∣∂f(xk)
∂xi

∣∣∣;
– set xk+1 = xk − ‖∇f(xk)‖∞

Lk
sgn

(
∂f(xk)
∂xik

)
eik .

The constants Lk can be chosen by either one of the three options: a constant
stepsize rule Lk ≡ L̄ ∈

(Lf

2 ,∞
)
, the backtracking procedure B4, or an exact line

search. Note that at each iteration only one coordinate is altered. This is a variant of
a coordinate descent method that actually has an interpretation as a non-Euclidean
gradient method.

Example 10.74. Consider the problem

min
x∈Rn

{
1

2
xTAx+ bTx

}
,

where A ∈ Sn++ and b ∈ Rn. The underlying space is E = Rn endowed with the

lp-norm (p ∈ [1,∞]). By Example 5.2, f is L
(p)
f -smooth with

L
(p)
f = ‖A‖p,q = max

x
{‖Ax‖q : ‖x‖p ≤ 1}

with q ∈ [1,∞] satisfying 1
p + 1

q = 1. Two examples of smoothness parameters are
the following:

• p = 2. In this case, since A is positive definite, L
(2)
f = ‖A‖2,2 = λmax(A).

• p = 1. Here L
(1)
f = ‖A‖1,∞ = maxi,j |Ai,j |.

The non-Euclidean gradient method for p = 2 is actually the Euclidean gradient

method; taking a constant stepsize corresponding to Lk = L
(2)
f = λmax(A), the

method takes the following form:

Algorithm G2

• Initialization: pick x0 ∈ Rn.

• General step (k ≥ 0): xk+1 = xk − 1

L
(2)
f

(Axk + b).

In the case p = 1 the method is a coordinate descent-type method, and with a

constant stepsize corresponding to Lk = L
(1)
f = maxi,j |Ai,j | it takes the following

form:
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324 Chapter 10. The Proximal Gradient Method

Algorithm G1

• Initialization: pick x0 ∈ Rn.

• General step (k ≥ 0):

– pick ik ∈ argmaxi=1,2,...,n|Aix
k + bi|, where Ai denotes the ith row

of A.

– update xk+1
j =

⎧⎪⎨⎪⎩
xkj , j 
= ik,

xkik − 1

L
(1)
f

(Aikx
k + bik), j = ik.

By Theorem 10.71,62

f(xk)− fopt ≤
2L

(p)
f R2

f(x0)

k
.

Therefore, the ratio
L

(2)
f

L
(1)
f

might indicate which of the methods should have an ad-

vantage over the other.

Remark 10.75. Note that Algorithm G2 (from Example 10.74) requires O(n2)
operations at each iteration since the matrix/vector multiplication Axk is computed.
On the other hand, a careful implementation of Algorithm G1 will only require
O(n) operations at each iteration; this can be accomplished by updating the gradient

gk ≡ Axk+b using the relation gk+1 = gk− Aik
xk+bik
L

(1)
f

Aeik (Aeik is obviously the

ikth column of A). Therefore, a fair comparison between Algorithms G1 and G2
will count each n iterations of algorithm G1 as “one iteration.” We will call such
an iteration a “meta-iteration.”

Example 10.76. Continuing Example 10.74, consider, for example, the matrix
A = A(d) ≡ J+dI, where the matrix J is the matrix of all ones. Then for any d > 0,

A(d) is positive definite and λmax(A
(d)) = d+n, maxi,j |A(d)

i,j | = d+1. Therefore, as

the ratio ρf ≡ L
(2)
f

L
(1)
f

= d+n
d+1 gets larger, the Euclidean gradient method (Algorithm

G2) should become more inferior to the non-Euclidean version (Algorithm G1).
We ran the two algorithms for the choice A = A(2) and b = 10e1 with initial

point x0 = en. The values f(xk) − fopt as a function of the iteration index k are
plotted in Figures 10.4 and 10.5 for n = 10 and n = 100, respectively. As can
be seen in the left images of both figures, when meta-iterations of algorithm G1
are compared with iterations of algorithm G2, the superiority of algorithm G1 is
significant. We also made the comparison when each iteration of algorithm G1 is just
an update of one coordinate, meaning that we do not consider meta-iterations. For
n = 10, the methods behave similarly, and there does not seem to be any preference
to G1 or G2. However, when n = 100, there is still a substantial advantage of
algorithm G1 compared to G2, despite the fact that it is a much cheaper method
w.r.t. the number of operations performed per iteration. A possible reason for this

62Note that also Rf(x0) might depend on the choice of norm.
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Figure 10.4. Comparison of the Euclidean gradient method (G2) with the
non-Euclidean gradient method (G1) applied on the problem from Example 10.76
with n = 10. The left image considers “meta-iterations” of G1, meaning that 10
iterations of G1 are counted as one iteration, while the right image counts each
coordinate update as one iteration.
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Figure 10.5. Comparison of the Euclidean gradient method (G2) with the
non-Euclidean gradient method (G1) applied on the problem from Example 10.76
with n = 100. The left image considers “meta-iterations” of G1, meaning that 100
iterations of G1 are counted as one iteration, while the right image counts each
coordinate update as one iteration.

is the fact that for n = 10, ρf = 2+10
2+1 = 4, while for n = 100, 2+100

2+1 = 34, and
hence it is expected that the advantage of algorithm G1 over algorithm G2 will be
more substantial when n = 100.
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326 Chapter 10. The Proximal Gradient Method

10.9.2 The Non-Euclidean Proximal Gradient Method
63

In this section we return to the composite model

min
x∈E

{F (x) ≡ f(x) + g(x)}, (10.92)

where the endowed norm on E is not assume to be Euclidean. Our main objective
will be to develop a non-Euclidean version of the proximal gradient method. We
note that when g ≡ 0, the method will not coincide with the non-Euclidean gradient
method discussed in Section 10.9.1, meaning that the approach described here,
which is similar to the generalization of projected subgradient to mirror descent
(see Chapter 9), is fundamentally different than the approach considered in the
non-Euclidean gradient method. We will make the following assumption.

Assumption 10.77.

(A) g : E → (−∞,∞] is proper closed and convex.

(B) f : E → (−∞,∞] is proper closed and convex; dom(g) ⊆ int(dom(f)) and f
is Lf -smooth over int(dom(f)).

(C) The optimal solution of problem (10.1) is nonempty and denoted by X∗. The
optimal value of the problem is denoted by Fopt.

In the Euclidean setting, the general update rule of the proximal gradient
method (see the discussion in Section 10.2) can be written in the following form:

xk+1 = argminx∈E

{
f(xk) + 〈∇f(xk),x− xk〉+ g(x) +

Lk
2

‖x− xk‖2
}
.

We will use the same idea as in the mirror descent method and replace the half-
squared Euclidean distance with a Bregman distance, leading to the following up-
date rule:

xk+1 = argminx∈E
{
f(xk) + 〈∇f(xk),x− xk〉+ g(x) + LkBω(x,x

k)
}
,

where Bω is the Bregman distance associated with ω (see Definition 9.2). The
function ω will satisfy the following properties.

Assumption 10.78 (properties of ω).

• ω is proper closed and convex.

• ω is differentiable over dom(∂ω).

• dom(g) ⊆ dom(ω).

• ω + δdom(g) is 1-strongly convex.

63The non-Euclidean proximal gradient method presented in Section 10.9.2 was analyzed in the
work of Tseng [121].
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10.9. Non-Euclidean Proximal Gradient Methods 327

The proximal gradient method is defined below.

The Non-Euclidean Proximal Gradient Method

Initialization: pick x0 ∈ dom(g) ∩ dom(∂ω).
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick Lk > 0;

(b) compute

xk+1 = argminx∈E

{〈
1

Lk
∇f(xk)− ∇ω(xk),x

〉
+

1

Lk
g(x) + ω(x)

}
.

(10.93)

Our first observation is that under Assumptions 10.77 and 10.78, the non-Euclidean
proximal gradient method is well defined, meaning that if xk ∈ dom(g)∩ dom(∂ω),
then the minimization problem in (10.93) has a unique optimal solution in dom(g)∩
dom(∂ω). This is a direct result of Lemma 9.7 invoked with ψ(x) =

〈
1
Lk

∇f(xk)−

∇ω(xk),x
〉
+ 1

Lk
g(x). The two stepsize rules that will be analyzed are detailed

below. We use the notation

VL(x̄) ≡ argminx∈E

{〈
1

L
∇f(x̄)− ∇ω(x̄),x

〉
+

1

L
g(x) + ω(x)

}
.

• Constant. Lk = L̄ = Lf for all k.

• Backtracking procedure B5. The procedure requires two parameters
(s, η), where s > 0 and η > 1. Define L−1 = s. At iteration k (k ≥ 0)
the choice of Lk is done as follows: First, Lk is set to be equal to Lk−1.
Then, while

f(VLk
(xk)) > f(xk) + 〈∇f(xk), VLk

(xk)− xk〉+ Lk
2

‖VLk
(xk)− xk‖2,

set Lk := ηLk. In other words, the stepsize is chosen as Lk = Lk−1η
ik ,

where ik is the smallest nonnegative integer for which the condition

f(VLk−1η
ik (x

k)) ≤ f(xk) + 〈∇f(xk), VLk−1η
ik (x

k)− xk〉

+
Lk
2

‖VLk−1ηik (x
k)− xk‖2

is satisfied.

Remark 10.79. In both stepsize rules the following inequality holds:

f(xk+1) ≤ f(xk) + 〈∇f(xk),xk+1 − xk〉+ Lk
2

‖xk+1 − xk‖2.
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328 Chapter 10. The Proximal Gradient Method

Remark 10.80. By the same arguments as in Remark 10.19 we have that Lk ≤
αLf , where α = 1 for the constant stepsize case and α = max

{
η, s

Lf

}
in the setting

of the backtracking procedure B5.

The rate of convergence result will now be stated and proved.

Theorem 10.81 (O(1/k) rate of convergence of the non-Euclidean prox-
imal gradient method). Suppose that Assumptions 10.77 and 10.78 hold. Let
{xk}k≥0 be the sequence generated by the non-Euclidean proximal gradient method
for solving problem (10.92) with either a constant stepsize rule in which Lk ≡ Lf
for all k ≥ 0 or the backtracking procedure B5. Then

(a) the sequence {F (xk)}k≥0 is nonincreasing;

(b) for any k ≥ 1 and x∗ ∈ X∗,

F (xk)− Fopt ≤
αLfBω(x

∗,x0)

k
,

where α = 1 in the constant stepsize setting and α = max
{
η, s

Lf

}
if the

backtracking rule is employed.

Proof. (a) We will use the notation m(x,y) ≡ f(y) + 〈∇f(y),x − y〉. For both
stepsize rules we have, for any n ≥ 0 (see Remark 10.79),

f(xn+1) ≤ m(xn+1,xn) +
Ln
2

‖xn+1 − xn‖2.

Therefore,

F (xn+1) = f(xn+1) + g(xn+1)

≤ m(xn+1,xn) + g(xn+1) +
Ln
2

‖xn+1 − xn‖2

≤ m(xn+1,xn) + g(xn+1) + LnBω(x
n+1,xn), (10.94)

where the 1-strong convexity of ω + δdom(g) was used in the last inequality. Note
that

xn+1 = argminx∈E{m(x,xn) + g(x) + LnBω(x,x
n)}. (10.95)

Therefore, in particular,

m(xn+1,xn) + g(xn+1) + LnBω(x
n+1,xn) ≤ m(xn,xn) + g(xn) + LnBω(x

n,xn)

= f(xn) + g(xn)

= F (xn),

which, combined with (10.94), implies that F (xn+1) ≤ F (xn), meaning that the
sequence of function values {F (xn)}n≥0 is nonincreasing.

(b) Let k ≥ 1 and x∗ ∈ X∗. Using the relation (10.95) and invoking the non-

Euclidean second prox theorem (Theorem 9.12) with ψ(x) = m(x,xn)+g(x)
Ln

, b = xn,

and a = xn+1, it follows that for all x ∈ dom(g),

〈∇ω(xn)− ∇ω(xn+1),x− xn+1〉 ≤ m(x,xn)−m(xn+1,xn) + g(x)− g(xn+1)

Ln
,
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10.9. Non-Euclidean Proximal Gradient Methods 329

which, combined with the three-points lemma (Lemma 9.11) with a = xn+1,b = xn,
and c = x, yields the inequality

Bω(x,x
n+1)+Bω(x

n+1,xn)−Bω(x,xn) ≤
m(x,xn)−m(xn+1,xn) + g(x)− g(xn+1)

Ln
.

Rearranging terms, we obtain that

m(xn+1,xn) + g(xn+1) + LnBω(x
n+1,xn) ≤ m(x,xn) + g(x) + LnBω(x,x

n)

− LnBω(x,x
n+1),

which, combined with (10.94), yields the inequality

F (xn+1) ≤ m(x,xn) + g(x) + LnBω(x,x
n)− LnBω(x,x

n+1).

Since f is convex, m(x,xn) ≤ f(x), and hence

F (xn+1)− F (x) ≤ LnBω(x,x
n)− LnBω(x,x

n+1).

Plugging in x = x∗ and dividing by Ln, we obtain

F (xn+1)− F (x∗)

Ln
≤ Bω(x

∗,xn)−Bω(x
∗,xn+1).

Using the bound Ln ≤ αLf (see Remark 10.80),

F (xn+1)− F (x∗)

αLf
≤ Bω(x

∗,xn)−Bω(x
∗,xn+1),

and hence

F (xn+1)− Fopt ≤ αLfBω(x
∗,xn)− αLfBω(x

∗,xn+1).

Summing the above inequality for n = 0, 1, . . . , k − 1, we obtain that

k−1∑
n=0

(F (xn+1)− Fopt) ≤ αLfBω(x
∗,x0)− αLfBω(x

∗,xk) ≤ αLfBω(x
∗,x0).

Using the monotonicity of the sequence of function values, we conclude that

k(F (xk)− Fopt) ≤ αLfBω(x
∗,x0),

thus obtaining the result

F (xk)− Fopt ≤
αLfBω(x

∗,x0)

k
.
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Chapter 11

The Block Proximal
Gradient Method

Underlying Spaces: In this chapter, all the underlying spaces are Euclidean (see
the details in Section 11.2).

11.1 Decomposition Methods
Many of the methods discussed in this book are decomposition methods, which,
loosely speaking, are methods that utilize at each step only a certain portion of the
problem’s data or resort to solving a smaller-dimension problem at each step. One
class of decomposition methods is the class of functional decomposition methods,
in which the data of the problem comprise several functions, and at each itera-
tion only a few of them (perhaps only one) are processed. Examples of functional
decomposition methods were studied in the context of the model

min
x

{
m∑
i=1

fi(x) : x ∈ C

}
.

In Example 8.36 it was shown that an implementation of the stochastic projected
subgradient method amounts to a method of the form

xk+1 = PC(x
k − tkf

′
ik(x

k)),

where the index ik is picked randomly by a uniform distribution. A deterministic
version of this method is the incremental projected subgradient method, which was
studied in Section 8.4, in which ik is picked by a cyclic order. In both methods,
each step exploits only one of the m functions that constitute the data of the
problem. The proximal gradient method is actually another example of a functional
decomposition method, where the relevant model (see Chapter 10) is

min
x∈E

f(x) + g(x).

The general step of the proximal gradient method is of the form

xk+1 = proxtkg(x
k − tk∇f(xk)).
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332 Chapter 11. The Block Proximal Gradient Method

The functions f and g are treated separately in the above update formula. First, a
gradient step w.r.t. f is taken, and then a prox operator w.r.t. g is computed.

Another class of decomposition methods is the class of variables decomposition
methods, in which at each iteration only a subset of the decision variables is altered
while all the other variables remain fixed. One example for such a method was
given in Example 10.73, where the problem of minimizing a differentiable function
over Rn was considered. The method described in Example 10.73 (non-Euclidean
gradient method under the l1-norm) picks one variable at each iteration by a certain
greedy rule and performs a gradient step w.r.t. the chosen variable while keeping
all the other variables fixed.

In this chapter we will consider additional variables decomposition methods;
these methods pick at each iteration one block of variables and perform a proximal
gradient step w.r.t. the chosen block.

11.2 Model and Assumptions

In this chapter we will consider methods for solving the composite model f + g in
the case where g has a block separable structure. More specifically, the main model
of this chapter is

min
x1∈E1,x2∈E2,...,xp∈Ep

⎧⎨⎩F (x1,x2, . . . ,xp) = f(x1,x2, . . . ,xp) +

p∑
j=1

gj(xj)

⎫⎬⎭ , (11.1)

where E1,E2, . . . ,Ep are Euclidean spaces. We will denote the product space by
E = E1 × E2 × · · · × Ep and use our convention (see Section 1.9) that the product
space is also Euclidean with endowed norm

‖(u1,u2, . . . ,up)‖E =

√√√√ p∑
i=1

‖ui‖2Ei
.

In most cases we will omit the subscript of the norm indicating the underlying vector
space (whose identity will be clear from the context). The function g : E → (−∞,∞]
is defined by

g(x1,x2, . . . ,xp) ≡
p∑
i=1

gi(xi).

The gradient w.r.t. the ith block (i ∈ {1, 2, . . . , p}) is denoted by ∇if , and whenever
the function is differentiable it holds that

∇f(x) = (∇1f(x),∇2f(x), . . . ,∇pf(x)).

For any i ∈ {1, 2, . . . , p} we define Ui : Ei → E to be the linear transformation given
by

Ui(d) = (0, . . . ,0, d︸︷︷︸
ith block

,0, . . . ,0), d ∈ Ei.

We also use throughout this chapter the notation that a vector x ∈ E can be written
as

x = (x1,x2, . . . ,xp),
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11.3. The Toolbox 333

and this relation will also be written as x = (xi)
p
i=1. Thus, in our notation, the

main model (11.1) can be simply written as

min
x∈E

{F (x) = f(x) + g(x)}.

The basic assumptions on the model are summarized below.

Assumption 11.1.

(A) gi : Ei → (−∞,∞] is proper closed and convex for any i ∈ {1, 2, . . . , p}.

(B) f : E → (−∞,∞] is proper and closed, and dom(f) is convex; dom(g) ⊆
int(dom(f)), and f is differentiable over int(dom(f)).

(C) f is Lf -smooth over int(dom(f)) (Lf > 0).

(D) There exist L1, L2, . . . , Lp > 0 such that for any i ∈ {1, 2, . . . , p} it holds that

‖∇if(x)− ∇if(x+ Ui(d))‖ ≤ Li‖d‖ (11.2)

for all x ∈ int(dom(f)) and d ∈ Ei for which x+ Ui(d) ∈ int(dom(f)).

(E) The optimal set of problem (11.1) is nonempty and denoted by X∗. The opti-
mal value is denoted by Fopt.

Remark 11.2 (block/global Lipschitz constants). The constant Lf will be
called the “global Lipschitz constant,” while the constants L1, L2, . . . , Lp are the
“block Lipschitz constants.” Obviously, we can choose Li = Lf for all i since by the
definition of Lf , (11.2) holds for Li = Lf . However, the block Lipschitz constants
can be significantly smaller than the global Lipschitz constant—a fact that might
have significant influence on the performance of the derived algorithms, as well as
their convergence rate.

11.3 The Toolbox

11.3.1 The Partial Gradient Mapping

Recall that the gradient mapping associated with the functions f, g and a constant
L > 0, as defined in Section 10.3.2, is a mapping from int(dom(f)) to E given by

Gf,gL (x) = L
(
x− T f,gL (x)

)
,

where T f,gL : int(dom(f)) → E is the prox-grad mapping given by

T f,gL (x) = prox 1
L g

(
x− 1

L
∇f(x)

)
.

From now on we will always omit the superscripts and write TL and GL instead of
T f,gL and Gf,gL . In the context of block variables decomposition methods, it is also
important to consider the notions of partial prox-grad mappings and partial gradient
mappings .
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334 Chapter 11. The Block Proximal Gradient Method

Definition 11.3 (partial prox-grad mapping). Suppose that f and g1, g2, . . . , gp
satisfy properties (A) and (B) of Assumption 11.1, L > 0, and let i ∈ {1, 2, . . . , p}.
Then the ith partial prox-grad mapping is the operator T iL : int(dom(f)) → Ei

defined by

T iL(x) = prox 1
L gi

(
xi −

1

L
∇if(x)

)
.

Definition 11.4 (partial gradient mapping). Suppose that f and g1, g2, . . . , gp
satisfy properties (A) and (B) of Assumption 11.1, L > 0, and let i ∈ {1, 2, . . . , p}.
Then the ith partial gradient mapping is the operator GiL : int(dom(f)) → Ei

defined by
GiL(x) = L

(
xi − T iL(x)

)
.

The ith partial prox-grad and gradient mappings depend on f and gi, but this
dependence is not indicated in our notation. If gi ≡ 0 for some i ∈ {1, 2, . . . , p},
then GiL(x) = ∇if(x); that is, in this case the partial gradient mapping coincides
with the mapping x �→ ∇if(x). Some basic properties of the partial prox-grad and
gradient mappings are summarized in the following lemma.

Lemma 11.5. Suppose that f and g1, g2, . . . , gp satisfy properties (A) and (B) of
Assumption 11.1, L > 0, and let i ∈ {1, 2, . . . , p}. Then for any x ∈ int(dom(f)),

TL(x) = (T 1
L(x), T

2
L(x), . . . , T

p
L(x)),

GL(x) = (G1
L(x), G

2
L(x), . . . , G

p
L(x)). (11.3)

Proof. By Theorem 6.6, we have that for any y ∈ dom(f),

prox 1
L g

(y) = (prox 1
L gi

(yi))
p
i=1.

Thus, for any x ∈ int(dom(f)),

TL(x) = prox 1
Lg

(
x− 1

L
∇f(x)

)
=

(
prox 1

L gi

([
x− 1

L
∇f(x)

]
i

))p
i=1

=

(
prox 1

Lgi

(
xi −

1

L
∇if(x)

))p
i=1

= (T iL(x))
p
i=1.

The second identity follows immediately:

GL(x) = L(x− TL(x)) = L
(
(xi)

p
i=1 − (T iL(x))

p
i=1

)
=
(
L(xi − T iL(x))

)p
i=1

=
(
GiL(x)

)p
i=1

.

A point x∗ ∈ dom(g) is a stationary point of problem (11.1) if −∇f(x∗) ∈
∂g(x∗) (see Definition 3.73). The following simple theorem shows that the station-
arity condition for problem (11.1) can be decomposed into p conditions expressed
in terms of the partial gradient mappings.
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11.3. The Toolbox 335

Theorem 11.6. Suppose that f and g1, g2, . . . , gp satisfy properties (A) and (B) of
Assumption 11.1. Then

(a) x∗ ∈ dom(g) is a stationary point of problem (11.1) if and only if

− ∇if(x
∗) ∈ ∂gi(x

∗
i ), i = 1, 2, . . . , p; (11.4)

(b) for any p positive numbers M1,M2, . . . ,Mp > 0, x∗ ∈ dom(g) is a stationary
point of problem (11.1) if and only if

GiMi
(x∗) = 0, i = 1, 2, . . . , p.

Proof. (a) By definition, x∗ ∈ dom(g) is a stationary point of problem (11.1) if
and only if

− ∇f(x∗) ∈ ∂g(x∗). (11.5)

By the block separable structure of g, it is easy to show that

∂g(x∗) = ∂g1(x
∗
1)× ∂g2(x

∗
2)× · · · × ∂gp(x

∗
p),

which, combined with the fact that ∇f(x∗) = (∇1f(x
∗),∇2f(x

∗), . . . ,∇pf(x
∗)),

implies that the relation (11.5) is equivalent to

−(∇1f(x
∗),∇2f(x

∗), . . . ,∇pf(x
∗)) ∈ ∂g1(x

∗
1)× ∂g2(x

∗
2)× · · · × ∂gp(x

∗
p),

that is, to (11.4).
(b) By the definition of the partial gradient mapping, GiMi

(x∗) = 0 if and only

if x∗i = prox 1
Mi

gi

(
x∗i − 1

Mi
∇if(x

∗)
)
, which, by the second prox theorem (Theorem

6.39), is equivalent to(
x∗i −

1

Mi
∇if(x

∗)

)
− x∗i ∈ 1

Mi
∂gi(x

∗
i ),

that is, to
−∇if(x

∗) ∈ ∂gi(x
∗
i ).

To summarize, GiMi
(x∗) = 0 for all i if and only if −∇if(x

∗) ∈ ∂gi(x
∗
i ) for all i,

which, by part (a), is equivalent to saying that x∗ is a stationary point of problem
(11.1).

The next results shows some monotonicity properties of the partial gradient
mapping w.r.t. its parameter. The result is presented without its proof, which is an
almost verbatim repetition of the arguments in Theorem 10.9.

Theorem 11.7 (monotonicity of the partial gradient mapping). Suppose
that f and g1, g2, . . . , gp satisfy properties (A) and (B) of Assumption 11.1, and let
i ∈ {1, 2, . . . , p}. Suppose that L1 ≥ L2 > 0. Then

‖GiL1
(x)‖ ≥ ‖GiL2

(x)‖

and
‖GiL1

(x)‖
L1

≤
‖GiL2

(x)‖
L2

for any x ∈ int(dom(f)).
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336 Chapter 11. The Block Proximal Gradient Method

11.3.2 The Block Descent Lemma

The block descent lemma is a variant of the descent lemma (Lemma 5.7), and its
proof is almost identical.

Lemma 11.8 (block descent lemma). Let f : E1×E2×· · ·×Ep → (−∞,∞] be
a proper function whose domain dom(f) is convex. Assume that f is differentiable
over int(dom(f)). Let i ∈ {1, 2, . . . , p}. Suppose that there exists Li > 0 for which

‖∇if(y)− ∇if(y + Ui(d))‖ ≤ Li‖d‖

for any y ∈ int(dom(f)) and d ∈ Ei for which y + Ui(d) ∈ int(dom(f)). Then

f(x+ Ui(d)) ≤ f(x) + 〈∇if(x),d〉+
Li
2
‖d‖2

for any x ∈ int(dom(f)) and d ∈ Ei for which x+ Ui(d) ∈ int(dom(f)).

Proof. Let x ∈ int(dom(f)) and d ∈ Ei such that x+Ui(d) ∈ int(dom(f)). Denote
x(t) = x+tUi(d) and define g(t) = f(x(t)). By the fundamental theorem of calculus,

f(x(1))− f(x) = g(1)− g(0) =

∫ 1

0

g′(t)dt

=

∫ 1

0

〈∇f(x(t)),Ui(d)〉dt =
∫ 1

0

〈∇if(x
(t)),d〉dt

= 〈∇if(x),d〉+
∫ 1

0

〈∇if(x
(t))− ∇if(x),d〉dt.

Thus,

|f(x(1))− f(x)− 〈∇if(x),d〉| =
∣∣∣∣∫ 1

0

〈∇if(x
(t))− ∇if(x),d〉dt

∣∣∣∣
≤
∫ 1

0

|〈∇if(x
(t))− ∇if(x),d〉|dt

(∗)
≤
∫ 1

0

‖∇if(x
(t))− ∇if(x)‖ · ‖d‖dt

≤
∫ 1

0

tLi‖d‖2dt

=
Li
2
‖d‖2,

where the Cauchy–Schwarz inequality was used in (∗).

11.3.3 Sufficient Decrease

The basic step that will be employed by all the methods discussed in this chapter
is a proximal gradient step w.r.t. a given block. Specifically, for a given x ∈ E and
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11.3. The Toolbox 337

i ∈ {1, 2, . . . , p}, the next updated vector x+ will have the form

x+
j =

⎧⎪⎨⎪⎩ xj , j 
= i,

T iLi
(x), j = i.

The above update formula can be compactly written as

x+ = x+ Ui(T iLi
(x) − xi).

We will now prove a variant of the sufficient decrease lemma (Lemma 10.4), in
which only Lipschitz continuity w.r.t. a certain block of the gradient of the function
is assumed.

Lemma 11.9 (block sufficient decrease lemma). Suppose that f and g1, g2,
. . . , gp satisfy properties (A) and (B) of Assumption 11.1. Let i ∈ {1, 2, . . . , p}.
Suppose that there exists Li > 0 for which

‖∇if(y)− ∇if(y + Ui(d))‖ ≤ Li‖d‖

for any y ∈ int(dom(f)) and d ∈ Ei for which y + Ui(d) ∈ int(dom(f)). Then

F (x)− F (x+ Ui(T iLi
(x)− xi)) ≥

1

2Li
‖GiLi

(x)‖2 (11.6)

for all x ∈ int(dom(f)).

Proof. For the sake of simplicity, we use the shorthand notation x+ = x +
Ui(T iLi

(x) − xi). By the block descent lemma (Lemma 11.8), we have that

f(x+) ≤ f(x) +
〈
∇if(x), T

i
Li
(x) − xi

〉
+
Li
2
‖T iLi

(x)− xi‖2. (11.7)

By the second prox theorem (Theorem 6.39), since T iLi
(x) = prox 1

Li
gi

(
xi −

1
Li

∇if(x)
)
, we have〈

xi −
1

Li
∇if(x)− T iLi

(x),xi − T iLi
(x)

〉
≤ 1

Li
gi(xi)−

1

Li
gi(T

i
Li
(x)),

and hence〈
∇if(x), T

i
Li
(x)− xi

〉
≤ −Li

∥∥T iLi
(x) − xi

∥∥2 + gi(xi)− gi(x
+
i ),

which, combined with (11.7), yields

f(x+) + gi(x
+
i ) ≤ f(x) + gi(xi)−

Li
2

∥∥T iLi
(x) − xi

∥∥2 .
Adding the identity

∑
j =i gj(x

+
j ) =

∑
j =i gj(xj) to the last inequality yields

F (x+) ≤ F (x)− Li
2

∥∥T iLi
(x) − xi

∥∥2 ,
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338 Chapter 11. The Block Proximal Gradient Method

which, by the definition of the partial gradient mapping, is equivalent to the desired
result (11.6).

Remark 11.10. Under the setting of Lemma 11.9, if we denote x+ = x +
Ui(T iLi

(x) − xi), then the sufficient decrease condition (11.6) can be written in the
following form:

F (x)− F (x+) ≥ Li
2
‖x− x+‖2.

11.4 The Cyclic Block Proximal Gradient Method

In the cyclic block proximal gradient (CBPG) method we successively pick a block
in a cyclic manner and perform a prox-grad step w.r.t. the chosen block. The kth
iterate is denoted by xk = (xk1 ,x

k
2 , . . . ,x

k
p). Each iteration of the CBPG method in-

volves p “subiterations,” and the by-products of these subiterations will be denoted
by the following auxiliary subsequences:

xk,0 = xk = (xk1 ,x
k
2 , . . . ,x

k
p),

xk,1 = (xk+1
1 ,xk2 , . . . ,x

k
p),

xk,2 = (xk+1
1 ,xk+1

2 ,xk3 , . . . ,x
k
p),

...

xk,p = xk+1 = (xk+1
1 ,xk+1

2 , . . . ,xk+1
p ).

We can also write the following formula for the kth member of the ith auxiliary
sequence:

xk,i =

i∑
j=1

Uj(xk+1
j ) +

p∑
j=i+1

Uj(xkj ). (11.8)

We are now ready to present the method.

The Cyclic Block Proximal Gradient (CBPG) Method

Initialization: pick x0 = (x0
1,x

0
2, . . . ,x

0
p) ∈ int(dom(f)).

General step: for any k = 0, 1, 2, . . . execute the following steps:

• set xk,0 = xk;

• for i = 1, 2, . . . , p, compute

xk,i = xk,i−1 + Ui(T iLi
(xk,i−1)− xk,i−1i );

• set xk+1 = xk,p.
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11.4. The Cyclic Block Proximal Gradient Method 339

11.4.1 Convergence Analysis of the CBPG Method—The
Nonconvex Case

The convergence analysis of the CBPG method relies on the following technical
lemma, which is a direct consequence of the sufficient decrease property of Lemma
11.9.

Lemma 11.11 (sufficient decrease of the CBPG method—version I). Sup-
pose that Assumption 11.1 holds, and let {xk}k≥0 be the sequence generated by the
CBPG method for solving problem (11.1) with the auxiliary sequences defined in
(11.8). Then

(a) for all k ≥ 0 and j ∈ {0, 1, . . . , p− 1} it holds that

F (xk,j)− F (xk,j+1) ≥ 1

2Lj+1
‖Gj+1

Lj+1
(xk,j)‖2, (11.9)

or equivalently,

F (xk,j)− F (xk,j+1) ≥ Lj+1

2
‖xk,j − xk,j+1‖2; (11.10)

(b) for all k ≥ 0,

F (xk)− F (xk+1) ≥ Lmin

2
‖xk − xk+1‖2, (11.11)

where Lmin = mini=1,2,...,p Li.

Proof. (a) Inequality (11.9) follows by invoking Lemma 11.9 with x = xk,j and
i = j + 1. The result (11.10) now follows by the identity ‖xk,j − xk,j+1‖2 =
‖T j+1

Lj+1
(xk,j)− xkj+1‖2 = 1

L2
j+1

‖Gj+1
Lj+1

(xk,j)‖2.
(b) Summing the inequality (11.10) over j = 0, 1, . . . , p− 1, we obtain

F (xk)− F (xk+1) =

p−1∑
j=0

(F (xk,j)− F (xk,j+1)) ≥
p−1∑
j=0

Lj+1

2
‖xk,j − xk,j+1‖2

=

p−1∑
j=0

Lj+1

2
‖xkj+1 − xk+1

j+1‖2 ≥ Lmin

2

p−1∑
j=0

‖xkj+1 − xk+1
j+1‖2

=
Lmin

2
‖xk − xk+1‖2.

A direct result of the last lemma is the monotonicity in function values of the
sequence generated by the CBPG method.

Corollary 11.12 (monotonicity of the sequence generated by the CBPG
method). Under the setting of Lemma 11.11, for any k ≥ 0, F (xk+1) ≤ F (xk),
and equality holds if and only if xk = xk+1.

We can now prove a sufficient decrease property of the CBPG method in terms
of the (nonpartial) gradient mapping.
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340 Chapter 11. The Block Proximal Gradient Method

Lemma 11.13 (sufficient decrease of the CBPG method—version II). Sup-
pose that Assumption 11.1 holds, and let {xk}k≥0 be the sequence generated by the
CBPG method for solving problem (11.1). Then for any k ≥ 0,

F (xk)− F (xk+1) ≥ C

p
‖GLmin(x

k)‖2, (11.12)

where

C =
Lmin

2(Lf + 2Lmax +
√
LminLmax)2

(11.13)

and

Lmin = min
i=1,2,...,p

Li, Lmax = max
i=1,2,...,p

Li.

Proof. Let i ∈ {0, 1, . . . , p− 1}. By (11.9),

F (xk)− F (xk+1) ≥ F (xk,i)− F (xk,i+1) ≥ 1

2Li+1
‖Gi+1

Li+1
(xk,i)‖2. (11.14)

We can bound ‖Gi+1
Li+1

(xk)‖ as follows:

‖Gi+1
Li+1

(xk)‖ ≤ ‖Gi+1
Li+1

(xk)−Gi+1
Li+1

(xk,i)‖ + ‖Gi+1
Li+1

(xk,i)‖ [triangle inequality]

≤ ‖GLi+1(x
k)−GLi+1(x

k,i)‖ + ‖Gi+1
Li+1

(xk,i)‖ [(11.3)]

≤ (2Li+1 + Lf )‖xk − xk,i‖+ ‖Gi+1
Li+1

(xk,i)‖ [Lemma 10.10(a)]

≤ (2Li+1 + Lf )‖xk − xk+1‖+ ‖Gi+1
Li+1

(xk,i)‖,

where the last inequality follows by the following argument:

‖xk − xk,i‖ =

√√√√ i∑
j=1

‖xkj − xk+1
j ‖2 ≤

√√√√ p∑
j=1

‖xkj − xk+1
j ‖2 = ‖xk − xk+1‖.

Using the inequalities (11.11) and (11.14), it follows that we can continue to bound
‖Gi+1

Li+1
(xk)‖ as follows:

‖Gi+1
Li+1

(xk)‖ ≤ (2Li+1 + Lf )‖xk − xk+1‖+ ‖Gi+1
Li+1

(xk,i)‖

≤
[√

2(2Li+1 + Lf )√
Lmin

+
√
2Li+1

]√
F (xk)− F (xk+1)

Li+1≤Lmax

≤
√

2

Lmin
(Lf + 2Lmax +

√
LminLmax)

√
F (xk)− F (xk+1).

By the monotonicity of the partial gradient mapping (Theorem 11.7), it follows that
‖Gi+1

Lmin
(xk)‖ ≤ ‖Gi+1

Li+1
(xk)‖, and hence, for any i ∈ {0, 1, . . . , p− 1},

F (xk)− F (xk+1) ≥ C‖Gi+1
Lmin

(xk)‖2,

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



11.4. The Cyclic Block Proximal Gradient Method 341

where C is given in (11.13). We can thus conclude that

‖GLmin(x
k)‖2 =

p−1∑
i=0

‖Gi+1
Lmin

(xk)‖2 ≤
p−1∑
i=0

F (xk)− F (xk+1)

C
=

p

C
(F (xk)−F (xk+1)),

which is the same as (11.12).

Equipped with Lemma 11.13, it is easy to show some standard convergence
properties of the CBPG method.

Theorem 11.14 (convergence of the CBPG method—nonconvex case).
Suppose that Assumption 11.1 holds, and let {xk}k≥0 be the sequence generated by
the CBPG method for solving problem (11.1). Denote

Lmin = min
i=1,2,...,p

Li, Lmax = max
i=1,2,...,p

Li,

and let C be given in (11.13). Then

(a) GLmin(x
k) → 0 as k → ∞;

(b) minn=0,1,...,k ‖GLmin(x
n)‖ ≤

√
p(F (x0)−Fopt)√

C(k+1)
;

(c) all limit points of the sequence {xk}k≥0 are stationary points of problem (11.1).

Proof. (a) Since the sequence {F (xk)}k≥0 is nonincreasing (Corollary 11.12) and
bounded below (by Assumption 11.1(E)), it converges. Thus, in particular F (xk)−
F (xk+1) → 0 as k → ∞, which, combined with (11.12), implies that ‖GLmin(x

k)‖ →
0 as k → ∞.

(b) By Lemma 11.13, for any n ≥ 0,

F (xn)− F (xn+1) ≥ C

p
‖GLmin(x

n)‖2. (11.15)

Summing the above inequality over n = 0, 1, . . . , k, we obtain

F (x0)− F (xk+1) ≥ C

p

k∑
n=0

‖GLmin(x
n)‖2 ≥ C(k + 1)

p
min

n=0,1,...,k
‖GLmin(x

n)‖2.

Using the fact that F (xk+1) ≥ Fopt, the result follows.
(c) Let x̄ be a limit point of {xk}k≥0. Then there exists a subsequence

{xkj}j≥0 converging to x̄. For any j ≥ 0,

‖GLmin(x̄)‖ ≤ ‖GLmin(x
kj )−GLmin(x̄)‖+ ‖GLmin(x

kj )‖
≤ (2Lmin + Lf )‖xkj − x̄‖+ ‖GLmin(x

kj )‖, (11.16)

where Lemma 10.10(a) was used in the last inequality. Since the expression in
(11.16) goes to 0 as j → ∞, it follows that GLmin(x̄) = 0, which, by Theorem
10.7(b), implies that x̄ is a stationary point of problem (11.1).
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342 Chapter 11. The Block Proximal Gradient Method

11.4.2 Convergence Analysis of the CBPG Method—The
Convex Case

64

We will now show a rate of convergence in function values of the CBPG method in
the case where f is assumed to be convex and a certain boundedness property of
the level sets of F holds.

Assumption 11.15.

(A) f is convex.

(B) For any α > 0, there exists Rα > 0 such that

max
x,x∗∈E

{‖x− x∗‖ : F (x) ≤ α,x∗ ∈ X∗} ≤ Rα.

The analysis in the convex case is based on the following key lemma describing
a recursive inequality relation of the sequence of function values.

Lemma 11.16. Suppose that Assumptions 11.1 and 11.15 hold. Let {xk}k≥0 be
the sequence generated by the CBPG method for solving problem (11.1). Then for
any k ≥ 0,

F (xk)− F (xk+1) ≥ Lmin

2p(Lf + Lmax)2R2
(F (xk+1)− Fopt)

2,

where R = RF (x0), Lmax = maxj=1,2,...,p Lj, and Lmin = minj=1,2,...,p Lj.

Proof. Let x∗ ∈ X∗. By the definition of the CBPG method, for any k ≥ 0 and
j ∈ {1, 2, . . . , p},

xk,jj = prox 1
Lj
gj

(
xk,j−1j − 1

Lj
∇jf(x

k,j−1)

)
.

Thus, invoking the second prox theorem (Theorem 6.39), for any y ∈ Ej ,

gj(y) ≥ gj(x
k,j
j ) + Lj

〈
xk,j−1j − 1

Lj
∇jf(x

k,j−1)− xk,jj ,y − xk,jj

〉
.

By the definition of the auxiliary sequences given in (11.8), xk,j−1j = xkj , x
k,j
j =

xk+1
j , and therefore

gj(y) ≥ gj(x
k+1
j ) + Lj

〈
xkj − 1

Lj
∇jf(x

k,j−1)− xk+1
j ,y − xk+1

j

〉
.

Thus, in particular, if we substitute y = x∗j ,

gj(x
∗
j ) ≥ gj(x

k+1
j ) + Lj

〈
xkj − 1

Lj
∇jf(x

k,j−1)− xk+1
j ,x∗j − xk+1

j

〉
.

64The type of analysis in Section 11.4.2 originates from Beck and Tetruashvili [22], who studied
the case in which the nonsmooth functions are indicators. The extension to the general composite
model can be found in Shefi and Teboulle [115] and Hong, Wang, Razaviyayn, and Luo [69].
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11.4. The Cyclic Block Proximal Gradient Method 343

Summing the above inequality over j = 1, 2, . . . , p yields the inequality

g(x∗) ≥ g(xk+1) +

p∑
j=1

Lj

〈
xkj − 1

Lj
∇jf(x

k,j−1)− xk+1
j ,x∗j − xk+1

j

〉
. (11.17)

We can now utilize the convexity of f and write

F (xk+1)− F (x∗) = f(xk+1)− f(x∗) + g(xk+1)− g(x∗)

≤ 〈∇f(xk+1),xk+1 − x∗〉+ g(xk+1)− g(x∗)

=

p∑
j=1

〈
∇jf(x

k+1),xk+1
j − x∗j

〉
+ g(xk+1)− g(x∗),

which, combined with (11.17), implies

F (xk+1)− F (x∗) ≤
p∑
j=1

〈
∇jf(x

k+1),xk+1
j − x∗j

〉
+

p∑
j=1

Lj

〈
xkj − 1

Lj
∇jf(x

k,j−1)− xk+1
j ,xk+1

j − x∗j

〉

=

p∑
j=1

〈
∇jf(x

k+1)− ∇jf(x
k,j−1) + Lj(x

k
j − xk+1

j ),xk+1
j − x∗j

〉
.

Using the Cauchy–Schwarz and triangle inequalities, we can conclude that

F (xk+1)− F (x∗) ≤
p∑
j=1

(
‖∇jf(x

k+1)− ∇jf(x
k,j−1)‖+ Lj‖xkj − xk+1

j ‖
)
‖xk+1

j − x∗j‖

≤
p∑
j=1

(
‖∇f(xk+1)− ∇f(xk,j−1)‖ + Lj‖xkj − xk+1

j ‖
)
‖xk+1

j − x∗j‖

≤
p∑
j=1

(
Lf‖xk+1 − xk,j−1‖+ Lmax‖xk − xk+1‖

)
‖xk+1

j − x∗j‖

≤ (Lf + Lmax)‖xk+1 − xk‖
p∑
j=1

‖xk+1
j − x∗j‖.

Hence,

(F (xk+1)− F (x∗))2 ≤ (Lf + Lmax)
2‖xk+1 − xk‖2

⎛⎝ p∑
j=1

‖xk+1
j − x∗j‖

⎞⎠2

≤ p(Lf + Lmax)
2‖xk+1 − xk‖2

p∑
j=1

‖xk+1
j − x∗j‖2

= p(Lf + Lmax)
2‖xk+1 − xk‖2 · ‖xk+1 − x∗‖2

≤ p(Lf + Lmax)
2R2

F (x0)‖xk+1 − xk‖2, (11.18)
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344 Chapter 11. The Block Proximal Gradient Method

where the last inequality follows by the monotonicity of the sequence of function
values (Corollary 11.12) and Assumption 11.15(B). Combining (11.18) with (11.11),
we obtain that

F (xk)− F (xk+1) ≥ Lmin

2
‖xk+1 − xk‖2 ≥ Lmin

2p(Lf + Lmax)2R2
(F (xk+1)− F (x∗))2,

where R = RF (x0).

To derive the rate of convergence in function values, we will use the following
lemma on the convergence of nonnegative scalar sequences satisfying a certain re-
cursive inequality relation. The result resembles the one derived in Lemma 10.70,
but the recursive inequality is different.

Lemma 11.17. Let {ak}k≥0 be a nonnegative sequence of real numbers satisfying

ak − ak+1 ≥ 1

γ
a2k+1, k = 0, 1, . . . , (11.19)

for some γ > 0. Then for any n ≥ 2,

an ≤ max

{(
1

2

)(n−1)/2
a0,

4γ

n− 1

}
. (11.20)

In addition, for any ε > 0, if n ≥ 2 satisfies

n ≥ max

{
2

log(2)
(log(a0) + log(1/ε)),

4γ

ε

}
+ 1,

then an ≤ ε.

Proof. Let n ≥ 2. If an = 0, then (11.20) is trivial. We can thus assume that
an > 0, from which it follows that a1, a2, . . . , an−1 > 0. For any k ∈ {0, 1, . . . , n−1},

1

ak+1
− 1

ak
=
ak − ak+1

akak+1
≥ 1

γ

ak+1

ak
. (11.21)

For each k, there are two options:

(i) ak+1

ak
≤ 1

2 .

(ii)
ak+1

ak
> 1

2 .

By (11.21), under option (ii) we have

1

ak+1
− 1

ak
≥ 1

2γ
.

Suppose that n is a positive even integer. If there are at least n
2 indices (out of

k = 0, 1, . . . , n− 1) for which option (ii) occurs, then

1

an
≥ n

4γ
,
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11.4. The Cyclic Block Proximal Gradient Method 345

and hence

an ≤ 4γ

n
.

On the other hand, if this is not the case, then there are at least n2 indices for which
option (i) occurs, and consequently

an ≤
(
1

2

)n/2
a0.

We therefore obtain that in any case, for an even n,

an ≤ max

{(
1

2

)n/2
a0,

4γ

n

}
. (11.22)

If n ≥ 3 is a positive odd integer, then

an ≤ an−1 ≤ max

{(
1

2

)(n−1)/2
a0,

4γ

n− 1

}
. (11.23)

Since the right-hand side of (11.23) is larger than the right-hand side of (11.22), the
result (11.20) follows. Let n ≥ 2. To guarantee that the inequality an ≤ ε holds, it
is sufficient that the inequality

max

{(
1

2

)(n−1)/2
a0,

4γ

n− 1

}
≤ ε

will hold, meaning that the following two inequalities will be satisfied:(
1

2

)(n−1)/2
a0 ≤ ε,

4γ

n− 1
≤ ε.

These inequalities are obviously equivalent to

n ≥ 2

log(2)
(log(a0) + log(1/ε)) + 1, n ≥ 4γ

ε
+ 1.

Therefore, if

n ≥ max

{
2

log(2)
(log(a0) + log(1/ε)),

4γ

ε

}
+ 1,

then the inequality an ≤ ε is guaranteed.

Combining Lemmas 11.16 and 11.17, we can establish an O(1/k) rate of con-
vergence in function values of the sequence generated by the CBPG method, as well
as a complexity result.

Theorem 11.18 (O(1/k) rate of convergence of CBPG). Suppose that As-
sumptions 11.1 and 11.15 hold. Let {xk}k≥0 be the sequence generated by the CBPG
method for solving problem (11.1). For any k ≥ 2,

F (xk)− Fopt ≤ max

{(
1

2

)(k−1)/2
(F (x0)− Fopt),

8p(Lf + Lmax)
2R2

Lmin(k − 1)

}
, (11.24)
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346 Chapter 11. The Block Proximal Gradient Method

where Lmin = mini=1,2,...,p Li, Lmax = maxi=1,2,...,p Li, and R = RF (x0). In addi-
tion, if n ≥ 2 satisfies

n ≥ max

{
2

log(2)
(log(F (x0)− Fopt) + log(1/ε)),

8p(Lf + Lmax)
2R2

Lminε

}
+ 1,

then F (xn)− Fopt ≤ ε.

Proof. Denote ak = F (xk)− Fopt. Then by Lemma 11.16,

ak − ak+1 ≥ 1

D
a2k+1,

where D =
2p(Lf+Lmax)

2R2

Lmin
. The result now follows by invoking Lemma 11.17 with

γ = D.

Remark 11.19 (index order). The analysis of the CBPG method was done under
the assumption that the index selection strategy is cyclic. However, it is easy to see
that the same analysis, and consequently the main results (Theorems 11.14 and
11.18), hold for any index selection strategy in which each block is updated exactly
once between consecutive iterations. One example of such an index selection strategy
is the “cyclic shuffle” order in which the order of blocks is picked at the beginning
of each iteration by a random permutation; in a sense, this is a “quasi-randomized”
strategy. In the next section we will study a fully randomized approach.

We end this section by showing that for convex differentiable functions (over
the entire space) block Lipschitz continuity (Assumption 11.1(D)) implies that the
function is L-smooth (Assumption 11.1(C)) with L being the sum of the block Lip-
schitz constants. This means that in this situation we can actually drop Assumption
11.1(C).

Theorem 11.20.65 Let φ : E → R (E = E1 × E2 × · · · × Ep) be a convex function
satisfying the following assumptions:

(A) φ is differentiable over E;

(B) there exist L1, L2, . . . , Lp > 0 such that for any i ∈ {1, 2, . . . , p} it holds that

‖∇iφ(x) − ∇iφ(x+ Ui(d))‖ ≤ Li‖d‖

for all x ∈ E and d ∈ Ei.

Then φ is L-smooth with L = L1 + L2 + · · ·+ Lp.

Proof. Let y ∈ E. Define the function

f(x) = φ(x)− φ(y) − 〈∇φ(y),x − y〉. (11.25)

Then it is immediate to show that f also satisfies properties (A) and (B). In addition,
the convexity of φ implies the convexity of f as well as the fact that f is nonnegative.

65Theorem 11.20 is a specialization of Lemma 2 from Nesterov [96].
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11.5. The Randomized Block Proximal Gradient Method 347

Invoking Lemma 11.9 with g1 = g2 = · · · = gp ≡ 0, we obtain that for all i ∈
{1, 2, . . . , p} and x ∈ E,

f(x)− f

(
x− 1

Li
Ui(∇if(x))

)
≥ 1

2Li
‖∇if(x)‖2,

which, along with the nonnegativity of f , implies that

f(x) ≥ 1

2Li
‖∇if(x)‖2.

Since the last inequality holds for any i ∈ {1, 2, . . . , p}, it follows that

f(x) ≥ max
i=1,2,...,p

{
1

2Li
‖∇if(x)‖2

}
≥

p∑
i=1

Li∑p
j=1 Lj

1

2Li
‖∇if(x)‖2

=
1

2(
∑p

j=1 Lj)
‖∇f(x)‖2.

Plugging the expression (11.25) for f into the above inequality, we obtain

φ(x) ≥ φ(y) + 〈∇φ(y),x − y〉+ 1

2(
∑p

j=1 Lj)
‖∇φ(x) − ∇φ(y)‖2.

Since the above inequality holds for any x,y ∈ E, it follows by Theorem 5.8 (equiv-
alence between (i) and (iii)) that φ is (L1 + L2 + · · ·+ Lp)-smooth.

11.5 The Randomized Block Proximal Gradient
Method

66

In this section we will analyze a version of the block proximal gradient method in
which at each iteration a prox-grad step is performed at a randomly chosen block.
The analysis is made under Assumption 11.21 given below. Note that at this point
we do not assume that f is convex, but the main convergence result, Theorem 11.25,
will require the convexity of f .

Assumption 11.21.

(A) gi : Ei → (−∞,∞] is proper closed and convex for any i ∈ {1, 2, . . . , p}.

(B) f : E → (−∞,∞] is proper closed and convex, dom(g) ⊆ int(dom(f)), and f
is differentiable over int(dom(f)).

(C) There exist L1, L2, . . . , Lp > 0 such that for any i ∈ {1, 2, . . . , p} it holds that

‖∇if(x)− ∇if(x+ Ui(d))‖ ≤ Li‖d‖

for all x ∈ int(dom(f)) and d ∈ Ei for which x+ Ui(d) ∈ int(dom(f)).

66The derivation of the randomized complexity result in Section 11.5 mostly follows the presen-
tation in the work of Lin, Lu, and Xiao [82].
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348 Chapter 11. The Block Proximal Gradient Method

(D) The optimal set of problem (11.1) is nonempty and denoted by X∗. The opti-
mal value is denoted by Fopt.

The Randomized Block Proximal Gradient (RBPG) Method

Initialization: pick x0 = (x0
1,x

0
2, . . . ,x

0
p) ∈ int(dom(f)).

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick ik ∈ {1, 2, . . . , p} randomly via a uniform distribution;

(b) xk+1 = xk + Uik(T ikLik
(xk)− xkik).

Remark 11.22. Step (b) of the algorithm can also be written as

xk+1 = xk − 1

Lik
Uik(GikLik

(xk)).

From the point of view of computational complexity, loosely speaking, each
p iterations of the RBPG method are comparable to one iteration of the CBPG
method.

Using the block sufficient decrease lemma (Lemma 11.9), it is easy to show a
sufficient decrease property of the RBPG method.

Theorem 11.23 (sufficient decrease of the RBPG method). Suppose that
Assumption 11.21 holds, and let {xk}k≥0 be the sequence generated by the RBPG
method. Then for any k ≥ 0,

F (xk)− F (xk+1) ≥ 1

2Lik
‖GikLik

(xk)‖2.

Proof. Invoke Lemma 11.9 with x = xk and i = ik.

Remark 11.24. A direct consequence of Theorem 11.23 is that the sequence of
function values {F (xk)}k≥0 generated by the RBPG method is nonincreasing. As a
result, it is also correct that the sequence of expected function values

{Ei0,...,ik−1
(F (xk))}k≥0

is nonincreasing.

In our analysis the following notation is used:

• ξk−1 ≡ {i0, i1, . . . , ik−1} is a multivariate random variable.
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11.5. The Randomized Block Proximal Gradient Method 349

• In addition to the underlying Euclidean norm of the space E, we define the
following weighted norm:

‖x‖L ≡

√√√√ p∑
i=1

Li‖xi‖2

and its dual norm

‖x‖L,∗ =

√√√√ p∑
i=1

1

Li
‖xi‖2.

• We will consider the following variation of the gradient mapping:

G̃(x) = (G1
L1
(xk), G2

L2
(xk), . . . , GpLp

(xk)). (11.26)

Obviously, if L1 = L2 = · · · = Lp = L, then G̃(x) = GL(x).

The main convergence result will now be stated and proved.

Theorem 11.25 (O(1/k) rate of convergence of the RBPG method). Sup-
pose that Assumption 11.21 holds and that f is convex. Let {xk}k≥0 be the sequence
generated by the RBPG method for solving problem (11.1). Let x∗ ∈ X∗. Then for
any k ≥ 0,

Eξk(F (x
k+1))− Fopt ≤

p

p+ k + 1

(
1

2
‖x0 − x∗‖2L + F (x0)− Fopt

)
. (11.27)

Proof. Let x∗ ∈ X∗. We denote for any n ≥ 0, rn ≡ ‖xn − x∗‖L. Then for any
k ≥ 0,

r2k+1 = ‖xk+1 − x∗‖2L

=

∥∥∥∥xk − 1

Lik
Uik

(
GikLik

(xk)
)
− x∗

∥∥∥∥2
L

= ‖xk − x∗‖2L − 2

Lik
Lik〈GikLik

(xk),xkik − x∗ik〉+
Lik
L2
ik

‖GikLik
(xk)‖2

= ‖xk − x∗‖2L − 2〈GikLik
(xk),xkik − x∗ik〉+

1

Lik
‖GikLik

(xk)‖2

= r2k − 2〈GikLik
(xk),xkik − x∗ik〉+

1

Lik
‖GikLik

(xk)‖2.

Taking expectation w.r.t. ik, we obtain (using the notation (11.26))

Eik

(
1

2
r2k+1

)
=

1

2
r2k − 1

p

p∑
i=1

〈GiLi
(xk),x

k
i − x∗i 〉+

1

2p

p∑
i=1

1

Li
‖GiLi

(xk)‖2

=
1

2
r2k − 1

p
〈G̃(xk),xk − x∗〉+ 1

2p
‖G̃(xk)‖2L,∗. (11.28)
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350 Chapter 11. The Block Proximal Gradient Method

By the block descent lemma (Lemma 11.8),

f(xk+1) = f

(
xk − 1

Lik
Uik(GikLik

(xk))

)
≤ f(xk)− 1

Lik
〈∇ikf(x

k), GikLik
(xk)〉+ 1

2Lik
‖GikLik

(xk)‖2.

Hence,

F (xk+1) ≤ f(xk)− 1

Lik
〈∇ikf(x

k), GikLik
(xk)〉 + 1

2Lik
‖GikLik

(xk)‖2 + g(xk+1).

Taking expectation of both sides of the last inequality w.r.t. ik, we obtain

Eik(F (x
k+1)) ≤ f(xk)−1

p

p∑
i=1

1

Li
〈∇if(x

k), GiLi
(xk)〉+ 1

2p
‖G̃(xk)‖2L,∗+Eik(g(x

k+1)).

(11.29)

Since xk+1
ik

= xkik − 1
Lik

GikLik
(xk) = prox 1

Lik
gik

(
xkik − 1

Lik

∇ikf(x
k)
)
, it follows by

the second prox theorem (Theorem 6.39) that

gik(x
∗
ik
) ≥ gik

(
xk
ik

− 1

Lik

Gik
Lik

(xk)

)

+Lik

〈
xk
ik

− 1

Lik

∇ikf(x
k)− xk

ik
+

1

Lik

G
ik
Lik

(xk),x∗
ik

− xk
ik

+
1

Lik

G
ik
Lik

(xk)

〉
.

That is,

gik(x
∗
ik ) ≥ gik

(
xkik − 1

Lik
GikLik

(xk)

)
+

〈
−∇ikf(x

k) +GikLik
(xk),x∗ik − xkik +

1

Lik
GikLik

(xk)

〉
. (11.30)

Note that

Eik(gik(x
∗
ik
)) =

1

p
g(x∗), (11.31)

Eik(g(x
k+1)) =

p− 1

p
g(xk) +

1

p

p∑
i=1

gi

(
xki − 1

Li
GiLi

(xk)

)
. (11.32)

Taking expectation w.r.t. ik in (11.30) and plugging in the relations (11.31) and
(11.32) leads to the following inequality:

1

p
g(x∗) ≥ Eik(g(x

k+1))− p− 1

p
g(xk) +

1

p
〈−∇f(xk) + G̃(xk),x∗ − xk〉

−1

p

p∑
i=1

1

Li
〈∇if(x

k), GiLi
(xk)〉+ 1

p
‖G̃(xk)‖2L,∗.

The last inequality can be equivalently written as

Eik(g(x
k+1))− 1

p

p∑
i=1

1

Li
〈∇if(x

k), GiLi
(xk)〉

≤ 1

p
g(x∗) +

p− 1

p
g(xk) +

1

p
〈∇f(xk)− G̃(xk),x∗ − xk〉 − 1

p
‖G̃(xk)‖2L,∗.
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11.5. The Randomized Block Proximal Gradient Method 351

Plugging the last inequality into (11.29) we obtain that

Eik(F (x
k+1)) ≤ f(xk)− 1

2p
‖G̃(xk)‖2L,∗ +

1

p
g(x∗) +

1

p
〈∇f(xk)− G̃(xk),x∗ − xk〉

+
p− 1

p
g(xk),

which, along with the gradient inequality 〈∇f(xk),x∗−xk〉 ≤ f(x∗)−f(xk), implies

Eik(F (x
k+1)) ≤ p− 1

p
F (xk) +

1

p
F (x∗)− 1

2p
‖G̃(xk)‖2L,∗ −

1

p
〈G̃(xk),x∗ − xk〉.

The last inequality, combined with (11.28), yields the relation

Eik

(
1

2
r2k+1

)
≤ 1

2
r2k +

p− 1

p
F (xk) +

1

p
F (x∗)− Eik(F (x

k+1)),

which can be rearranged as

Eik

(
1

2
r2k+1 + F (xk+1)− Fopt

)
≤
(
1

2
r2k + F (xk)− Fopt

)
− 1

p
(F (xk)− Fopt).

Taking expectation over ξk−1 of both sides we obtain (where we make the convention
that the expression Eξ−1(F (x

0)) means F (x0))

Eξk

(
1

2
r2k+1 + F (xk+1)− Fopt

)
≤ Eξk−1

(
1

2
r2k + F (xk)− Fopt

)
− 1

p
(Eξk−1

(F (xk))− Fopt).

We can thus conclude that

Eξk(F (x
k+1))− Fopt ≤ Eξk

(
1

2
r2k+1 + F (xk+1)− Fopt

)
≤ 1

2
r20 + F (x0)− Fopt −

1

p

k∑
j=0

(
Eξj−1(F (x

j))− Fopt

)
,

which, together with the monotonicity of the sequence of expected values
{Eξk−1

(F (xk))}k≥0 (see Remark 11.24), implies that

Eξk(F (x
k+1))−Fopt ≤

1

2
r20+F (x

0)−Fopt−
k + 1

p

(
Eξk(F (x

k+1))− Fopt

)
. (11.33)

The desired result (11.27) follows immediately from (11.33).

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Chapter 12

Dual-Based Proximal
Gradient Methods

Underlying Spaces: In this chapter, all the underlying spaces are Euclidean.

12.1 The Primal and Dual Models
The main model discussed in this chapter is

fopt = min
x∈E

{f(x) + g(A(x))} , (12.1)

where the following assumptions are made.

Assumption 12.1.

(A) f : E → (−∞,+∞] is proper closed and σ-strongly convex (σ > 0).

(B) g : V → (−∞,+∞] is proper closed and convex.

(C) A : E → V is a linear transformation.

(D) There exists x̂ ∈ ri(dom(f)) and ẑ ∈ ri(dom(g)) such that A(x̂) = ẑ.

Under Assumption 12.1 the function x �→ f(x)+ g(A(x)) is proper closed and
σ-strongly convex, and hence, by Theorem 5.25(a), problem (12.1) has a unique
optimal solution, which we denote throughout this chapter by x∗.

To construct a dual problem to (12.1), we first rewrite it in the form

minx,z f(x) + g(z)

s.t. A(x) − z = 0.
(12.2)

Associating a Lagrange dual vector y ∈ V to the equality constraints in (12.2),
the Lagrangian can be written as

L(x, z;y) = f(x)+ g(z)−〈y,A(x)−z〉 = f(x)+ g(z)−〈AT (y),x〉+ 〈y, z〉. (12.3)

353
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354 Chapter 12. Dual-Based Proximal Gradient Methods

Minimizing the Lagrangian w.r.t. x and z, the obtained dual problem is

qopt = max
y∈V

{
q(y) ≡ −f∗(AT (y)) − g∗(−y)

}
. (12.4)

By the strong duality theorem for convex problems (see Theorem A.1), it follows
that strong duality holds for the pair of problems (12.1) and (12.4).

Theorem 12.2 (strong duality for the pair of problems (12.1) and (12.4)).
Suppose that Assumption 12.1 holds, and let fopt, qopt be the optimal values of the
primal and dual problems (12.1) and (12.4), respectively. Then fopt = qopt, and the
dual problem (12.4) possesses an optimal solution.

We will consider the dual problem in its minimization form:

min
y∈V

{F (y) +G(y)}, (12.5)

where

F (y) ≡ f∗(AT (y)), (12.6)

G(y) ≡ g∗(−y). (12.7)

The basic properties of F and G are gathered in the following lemma.

Lemma 12.3 (properties of F and G). Suppose that Assumption 12.1 holds,
and let F and G be defined by (12.6) and (12.7), respectively. Then

(a) F : V → R is convex and LF -smooth with LF = ‖A‖2
σ ;

(b) G : V → (−∞,∞] is proper closed and convex.

Proof. (a) Since f is proper closed and σ-strongly convex, then by the conjugate
correspondence theorem (Theorem 5.26(b)), f∗ is 1

σ -smooth. Therefore, for any
y1,y2 ∈ V,

‖∇F (y1)− ∇F (y2)‖ = ‖A(∇f∗(AT (y1))) − A(∇f∗(AT (y2)))‖
≤ ‖A‖ · ‖∇f∗(AT (y1))− ∇f∗(AT (y2))‖

≤ 1

σ
‖A‖ · ‖AT (y1)− AT (y2)‖

≤ ‖A‖ · ‖AT ‖
σ

‖y1 − y2‖ =
‖A‖2
σ

‖y1 − y2‖,

where we used in the last equality the fact that ‖A‖ = ‖AT ‖ (see Section 1.14). To
show the convexity of F , note that f∗ is convex as a conjugate function (Theorem
4.3), and hence, by Theorem 2.16, F , as a composition of a convex function and a
linear mapping, is convex.

(b) Since g is proper closed and convex, so is g∗ (Theorems 4.3 and 4.5). Thus,
G(y) ≡ g∗(−y) is also proper closed and convex.
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12.2. The Dual Proximal Gradient Method 355

12.2 The Dual Proximal Gradient Method
67

Problem (12.5) consists of minimizing the sum of a convex L-smooth function and a
proper closed and convex function. It is therefore possible to employ in this setting
the proximal gradient method on problem (12.5), which is equivalent to the dual
problem of (12.1). Naturally we will refer to this algorithm as the “dual proximal
gradient” (DPG) method. The dual representation of the method is given below.

Dual Proximal Gradient—dual representation

• Initialization: pick y0 ∈ V and L ≥ LF = ‖A‖2
σ .

• General step (k ≥ 0):

yk+1 = prox 1
LG

(
yk − 1

L
∇F (yk)

)
. (12.8)

Since F is convex and LF -smooth and G is proper closed and convex, we can
invoke Theorem 10.21 to obtain an O(1/k) rate of convergence in terms of the dual
objective function values.

Theorem 12.4. Suppose that Assumption 12.1 holds, and let {yk}k≥0 be the

sequence generated by the DPG method with L ≥ LF = ‖A‖2
σ . Then for any optimal

solution y∗ of the dual problem (12.4) and k ≥ 1,

qopt − q(yk) ≤ L‖y0 − y∗‖2
2k

.

Our goal now will be to find a primal representation of the method, which
will be written in a more explicit way in terms of the data of the problem, meaning
(f, g,A). To achieve this goal, we will require the following technical lemma.

Lemma 12.5. Let F (y) = f∗(AT (y) + b), G(y) = g∗(−y), where f , g, and A
satisfy properties (A), (B), and (C) of Assumption 12.1 and b ∈ E. Then for any
y,v ∈ V and L > 0 the relation

y = prox 1
LG

(
v − 1

L
∇F (v)

)
(12.9)

holds if and only if

y = v − 1

L
A(x̃) +

1

L
proxLg(A(x̃)− Lv),

where
x̃ = argmaxx

{
〈x,AT (v) + b〉 − f(x)

}
.

Proof. By the conjugate subgradient theorem (Corollary 4.21), since f is proper
closed and convex,

∇f∗(AT (v) + b) = x̃ ∈ E ≡ argmaxx
{
〈x,AT (v) + b〉 − f(x)

}
.

67Sections 12.2 and 12.3 follow the work of Beck and Teboulle [21].
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356 Chapter 12. Dual-Based Proximal Gradient Methods

Therefore, since ∇F (v) = A(∇f∗(AT (v) + b)) = A(x̃),

y = prox 1
LG

(
v − 1

L
A(x̃)

)
. (12.10)

Invoking Theorem 6.15 with g ← 1
Lg
∗, A = −I, b = 0, we obtain that for any

z ∈ V,
prox 1

LG
(z) = −prox 1

Lg
∗(−z). (12.11)

Combining (12.10) and (12.11) and using the extended Moreau decomposition for-
mula (Theorem 6.45), we finally obtain that

y = prox 1
LG

(
v − 1

L
A(x̃)

)
= −prox 1

Lg
∗

(
1

L
A(x̃)− v

)
= −

[
1

L
A(x̃)− v − 1

L
proxLg(A(x̃)− Lv)

]
= v − 1

L
A(x̃) +

1

L
proxLg(A(x̃)− Lv).

Equipped with Lemma 12.5, we can write a primal representation of the DPG
method.

The Dual Proximal Gradient (DPG) Method—primal representation

Initialization: pick y0 ∈ V, and L ≥ ‖A‖2
σ .

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) set xk = argmaxx
{
〈x,AT (yk)〉 − f(x)

}
;

(b) set yk+1 = yk − 1
LA(xk) + 1

LproxLg(A(xk)− Lyk).

Remark 12.6 (the primal sequence). The sequence {xk}k≥0 generated by the
method will be called “the primal sequence.” The elements of the sequence are ac-
tually not necessarily feasible w.r.t. the primal problem (12.1) since they are not
guaranteed to belong to dom(g); nevertheless, we will show that the primal sequence
does converge to the optimal solution x∗.

To prove a convergence result in terms of the primal sequence, we will require
the following fundamental primal-dual relation.

Lemma 12.7 (primal-dual relation). Suppose that Assumption 12.1 holds. Let
ȳ ∈ dom(G), where G is given in (12.7), and let

x̄ = argmaxx∈E
{
〈x,AT (ȳ)〉 − f(x)

}
. (12.12)

Then

‖x̄− x∗‖2 ≤ 2

σ
(qopt − q(ȳ)). (12.13)
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12.2. The Dual Proximal Gradient Method 357

Proof. Recall that the primal problem (12.1) can be equivalently written as the
problem

min
x∈E,z∈V

{f(x) + g(z) : A(x)− z = 0},

whose Lagrangian is (see also (12.3))

L(x, z;y) = f(x)− 〈AT (y),x〉 + g(z) + 〈y, z〉.

In particular,
L(x, z; ȳ) = h(x) + s(z), (12.14)

where

h(x) = f(x)− 〈AT (ȳ),x〉,
s(z) = g(z) + 〈ȳ, z〉.

Since h is σ-strongly convex and x̄ is its minimizer (see relation (12.12)), it follows
by Theorem 5.25(b) that

h(x)− h(x̄) ≥ σ

2
‖x− x̄‖2. (12.15)

Since the relation ȳ ∈ dom(G) is equivalent to −ȳ ∈ dom(g∗), it follows that

min
z∈V

{g(z) + 〈ȳ, z〉} = min
z∈V

s(z) > −∞.

Let ε > 0. Then there exists z̄ε for which

s(z̄ε) ≤ min
z∈V

s(z) + ε. (12.16)

Combining (12.14), (12.15), and (12.16), we obtain that for all x ∈ dom(f) and
z ∈ dom(g),

L(x, z; ȳ)− L(x̄, z̄ε; ȳ) = h(x)− h(x̄) + s(z)− s(z̄ε) ≥
σ

2
‖x− x̄‖2 − ε.

In particular, substituting x = x∗, z = z∗ ≡ A(x∗), then L(x∗, z∗; ȳ) = f(x∗) +
g(A(x∗)) = fopt = qopt (by Theorem 12.2), and we obtain

qopt − L(x̄, z̄ε; ȳ) ≥
σ

2
‖x∗ − x̄‖2 − ε. (12.17)

In addition, by the definition of the dual objective function value,

L(x̄, z̄ε; ȳ) ≥ min
x∈E,z∈V

L(x, z; ȳ) = q(ȳ),

which, combined with (12.17), results in the inequality

‖x̄− x∗‖2 ≤ 2

σ
(qopt − q(ȳ)) +

2

σ
ε.

Since the above inequality holds for any ε > 0, the desired result (inequality (12.13))
follows.
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358 Chapter 12. Dual-Based Proximal Gradient Methods

Combining the primal-dual relation of Lemma 12.7 with the rate of conver-
gence of the sequence of dual objective function values stated in Theorem 12.4,
we can deduce a rate of convergence result for the primal sequence to the unique
optimal solution.

Theorem 12.8 (O(1/k) rate of convergence of the primal sequence of
the DPG method). Suppose that Assumption 12.1 holds, and let {xk}k≥0 and
{yk}k≥0 be the primal and dual sequences generated by the DPG method with L ≥
LF = ‖A‖2

σ . Then for any optimal solution y∗ of the dual problem (12.4) and k ≥ 1,

‖xk − x∗‖2 ≤ L‖y0 − y∗‖2
σk

. (12.18)

Proof. Invoking Lemma 12.7 with ȳ = yk, we obtain by the definition of x̄ (equa-
tion (12.12)) that x̄ = xk, and hence (12.13) reads as

‖xk − x∗‖2 ≤ 2

σ
(qopt − q(yk)),

which, combined with Theorem 12.4, yields the desired result.

12.3 Fast Dual Proximal Gradient
The DPG method employs the proximal gradient method on the dual problem.
Alternatively, we can also employ FISTA (see Section 10.7) on the dual problem
(12.4). The dual representation of the method is given below.

The Fast Dual Proximal Gradient (FDPG) Method—dual represen-
tation

• Initialization: L ≥ LF = ‖A‖2
σ ,w0 = y0 ∈ E, t0 = 1.

• General step (k ≥ 0):

(a) yk+1 = prox 1
LG

(
wk − 1

L∇F (wk)
)
;

(b) tk+1 =
1+

√
1+4t2k
2 ;

(c) wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).

Since this is exactly FISTA employed on the dual problem, we can invoke
Theorem 10.34 and obtain a convergence result in terms of dual objective function
values.

Theorem 12.9. Suppose that Assumption 12.1 holds and that {yk}k≥0 is the

sequence generated by the FDPG method with L ≥ LF = ‖A‖2
σ . Then for any

optimal solution y∗ of problem (12.4) and k ≥ 1,

qopt − q(yk) ≤ 2L‖y0 − y∗‖2
(k + 1)2

.
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12.3. Fast Dual Proximal Gradient 359

Using Lemma 12.5 with v = wk, y = yk+1, and b = 0, we obtain that step
(a) of the FDPG method, namely,

yk+1 = prox 1
LG

(
wk − 1

L
∇F (wk)

)
,

can be equivalently written as

uk = argmaxu
{
〈u,AT (wk)〉 − f(u)

}
,

yk+1 = wk − 1

L
A(uk) +

1

L
proxLg(A(uk)− Lwk).

We can thus formulate a primal representation of the method.

The Fast Dual Proximal Gradient (FDPG) Method—primal represen-
tation

Initialization: L ≥ LF = ‖A‖2
σ ,w0 = y0 ∈ V, t0 = 1.

General step (k ≥ 0):

(a) uk = argmaxu
{
〈u,AT (wk)〉 − f(u)

}
;

(b) yk+1 = wk − 1
LA(uk) + 1

LproxLg(A(uk)− Lwk);

(c) tk+1 =
1+

√
1+4t2k
2 ;

(d) wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).

The primal sequence that we will be interested in is actually not computed
during the steps of the FDPG method. The definition of the primal sequence on
which a convergence result will be proved is

xk = argmaxx∈E
{
〈x,AT (yk)〉 − f(x)

}
. (12.19)

The convergence result on the primal sequence is given below, and its proof is
almost a verbatim repetition of the proof of Theorem 12.8.

Theorem 12.10 (O(1/k2) convergence of the primal sequence of the FDPG
method). Suppose that Assumption 12.1 holds, and let {yk}k≥0 be the sequence

generated by the FDPG method with L ≥ LF = ‖A‖2
σ . Let {xk}k≥0 be the sequence

defined by (12.19). Then for any optimal solution y∗ of the dual problem (12.4) and
k ≥ 1,

‖xk − x∗‖2 ≤ 4L‖y0 − y∗‖2
σ(k + 1)2

.
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360 Chapter 12. Dual-Based Proximal Gradient Methods

Proof. Invoking Lemma 12.7 with ȳ = yk, we obtain by the definition of x̄ (equa-
tion (12.12)) that x̄ = xk, and hence the result (12.13) reads as

‖xk − x∗‖2 ≤ 2

σ
(qopt − q(yk)),

which, combined with Theorem 12.9, yields the desired result.

12.4 Examples I

12.4.1 Orthogonal Projection onto a Polyhedral Set

Let
S = {x ∈ R

n : Ax ≤ b},
where A ∈ R

p×n, b ∈ R
p. We assume that S is nonempty. Let d ∈ R

n. The
orthogonal projection of d onto S is the unique optimal solution of the problem

min
x∈Rn

{
1

2
‖x− d‖2 : Ax ≤ b

}
. (12.20)

Problem (12.20) fits model (12.1) with E = Rn,V = Rp, f(x) = 1
2‖x− d‖2,

g(z) = δBox[−∞e,b](z) =

⎧⎪⎨⎪⎩ 0, z ≤ b,

∞ else,

and A(x) ≡ Ax. We have

• argmaxx{〈v,x〉 − f(x)} = v + d for any v ∈ Rn;

• ‖A‖ = ‖A‖2,2;

• σ = 1;

• AT (y) = ATy for any y ∈ Rp;

• proxLg(z) = PBox[−∞e,b](z) = min{z,b}, where min{z,b} is the vector
(min{zi, bi})pi=1.

Using these facts, the DPG and FDPG methods for solving problem (12.20)
can be explicitly written.

Algorithm 1 [DPG for solving (12.20)]

• Initialization: L ≥ ‖A‖22,2,y0 ∈ Rp.

• General step (k ≥ 0):

(a) xk = ATyk + d;

(b) yk+1 = yk − 1
LAxk + 1

L min{Axk − Lyk,b}.
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12.4. Examples I 361

Algorithm 2 [FDPG for solving (12.20)]

• Initialization: L ≥ ‖A‖22,2,w0 = y0 ∈ Rp, t0 = 1.

• General step (k ≥ 0):

(a) uk = ATwk + d;

(b) yk+1 = wk − 1
LAuk + 1

L min{Auk − Lwk,b};

(c) tk+1 =
1+

√
1+4t2k
2 ;

(d) wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).

The primal sequence for the FDPG method is given by xk = ATyk + d.

12.4.2 Orthogonal Projection onto the Intersection of Closed
Convex Sets

Given p closed and convex sets C1, C2, . . . , Cp ⊆ E and a point d ∈ E, the orthogonal
projection of d onto the intersection ∩pi=1Ci is the optimal solution of the problem

min
x∈E

{
1

2
‖x− d‖2 : x ∈ ∩pi=1Ci

}
. (12.21)

We will assume that the intersection ∩pi=1Ci is nonempty and that projecting onto
each set Ci is an easy task. Our purpose will be to devise a method for solving
problem (12.21) that only requires computing at each iteration—in addition to ele-
mentary linear algebra operations—orthogonal projections onto the sets Ci. Prob-
lem (12.21) fits model (12.1) with V = Ep, f(x) = 1

2‖x − d‖2, g(x1,x2, . . . ,xp) =∑p
i=1 δCi(xi), and A : E → V given by

A(z) = (z, z, . . . , z︸ ︷︷ ︸
p times

) for any z ∈ E.

We have

• argmaxx{〈v,x〉 − f(x)} = v + d for any v ∈ E;

• ‖A‖2 = p;

• σ = 1;

• AT (y) =
∑p

i=1 yi for any y ∈ Ep;

• proxLg(v1,v2, . . . ,vp) = (PC1(v1), PC2(v2), . . . , PCp(vp)) for any v ∈ Ep.

Using these facts, the DPG and FDPG methods for solving problem (12.21) can be
explicitly written.
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362 Chapter 12. Dual-Based Proximal Gradient Methods

Algorithm 3 [DPG for solving (12.21)]

• Initialization: L ≥ p,y0 ∈ Ep.

• General step (k ≥ 0):

(a) xk =
∑p
i=1 y

k
i + d;

(b) yk+1
i = yki − 1

Lx
k + 1

LPCi(x
k − Lyki ), i = 1, 2, . . . , p.

Algorithm 4 [FDPG for solving (12.21)]

• Initialization: L ≥ p,w0 = y0 ∈ Ep, t0 = 1.

• General step (k ≥ 0):

(a) uk =
∑p

i=1 w
k
i + d;

(b) yk+1
i = wk

i − 1
Lu

k + 1
LPCi(u

k − Lwk
i ), i = 1, 2, . . . , p;

(c) tk+1 =
1+

√
1+4t2

k

2 ;

(d) wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).

To actually guarantee convergence of the method, Assumption 12.1 needs to be
satisfied, meaning that we assume that ∩pi=1ri(Ci) 
= ∅.

The primal sequence for the FDPG method is given by xk =
∑p
i=1 y

k
i + d.

Example 12.11 (orthogonal projection onto a polyhedral set revisited).
Note that Algorithm 4 can also be used to find an orthogonal projection of a point
d ∈ Rn onto the polyhedral set C = {x ∈ Rn : Ax ≤ b}, where A ∈ Rp×n,b ∈ Rp.
Indeed, C can be written as the following intersection of half-spaces:

C = ∩pi=1Ci,

where

Ci = {x ∈ R
n : aTi x ≤ bi}, (12.22)

with aT1 , a
T
2 , . . . , a

T
p being the rows of A. The projections on the half-spaces are

simple and given by (see Lemma 6.26) PCi(x) = x − [aT
i x−bi]+
‖ai‖2 ai. To summarize,

the problem

min
x∈Rn

{
1

2
‖x− d‖22 : Ax ≤ b

}
can be solved by two different FDPG methods. The first one is Algorithm 2, and
the second one is the following algorithm, which is Algorithm 4 specified to the case
where Ci is given by (12.22) for any i ∈ {1, 2, . . . , p}.
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12.4. Examples I 363

Algorithm 5 [second version of FDPG for solving (12.20)]

• Initialization: L ≥ p,w0 = y0 ∈ Ep, t0 = 1.

• General step (k ≥ 0):

(a) uk =
∑p

i=1 w
k
i + d;

(b) yk+1
i = − 1

L‖ai‖2 [a
T
i (u

k − Lwk
i )− bi]+ai, i = 1, 2, . . . , p;

(c) tk+1 =
1+

√
1+4t2k
2 ;

(d) wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).

Example 12.12 (comparison between DPG and FDPG). The O(1/k2) rate
of convergence obtained for the FDPG method (Theorem 12.10) is better than the
O(1/k) result obtained for the DPG method (Theorem 12.8). To illustrate that
this theoretical advantage is also reflected in practice, we consider the problem of
projecting the point (0.5, 1.9)T onto a dodecagon—a regular polygon with 12 edges,
which is represented as the intersection of 12 half-spaces. The first 10 iterations of
the DPG and FDPG methods with L = p = 12 can be seen in Figure 12.1, where
the DPG and FDPG methods that were used are those described by Algorithms 3
and 4 for the intersection of closed convex sets (which are taken as the 12 half-spaces
in this example) and not Algorithms 1 and 2. Evidently, the FDPG method was
able to find a good approximation of the projection after 10 iterations, while the
DPG method was rather far from the required solution.

5 5 0 0.5 1 1.5 2

5

5

0

0.5

1

1.5

2

2.5

DPG

2 1.5 1 0.5 0 0.5 1 1.5 2

1.5

1

0.5

0

0.5

1

1.5

2

2.5

FDPG

Figure 12.1. First 10 iterations of the DPG method (Algorithm 3) and
the FDPG method (Algorithm 4/5). The initial value of the dual vector y was the
zeros vector in both methods.
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364 Chapter 12. Dual-Based Proximal Gradient Methods

12.4.3 One-Dimensional Total Variation Denoising

In the denoising problem we are given a signal d ∈ E, which is contaminated by
noise, and we seek to find another vector x ∈ E, which, on the one hand, is close to
d in the sense that the norm ‖x−d‖ is small and, on the other hand, yields a small
regularization term R(A(x)), where here A : E → V is a linear transformation that
in many applications accounts for the smoothness of the signal and R : V → R+

is a given convex function that measures the magnitude of its argument in some
sense. The denoising problem is then defined to be

min
x∈E

{
1

2
‖x− d‖2 +R(A(x))

}
. (12.23)

In the one-dimensional total variation denoising problem, we are interested in the
case where E = Rn,V = Rn−1,A(x) = Dx, and R(z) = λ‖z‖1 with λ > 0 being a
“regularization parameter” and D being the matrix satisfying Dx = (x1 − x2, x2 −
x3, . . . , xn−1 − xn)

T for all x ∈ Rn. Thus, problem (12.23) takes the form68

min
x∈Rn

{
1

2
‖x− d‖22 + λ‖Dx‖1

}
(12.24)

or, more explicitly,

min
x∈Rn

{
1

2
‖x− d‖22 + λ

n−1∑
i=1

|xi − xi+1|
}
.

The function x �→ ‖Dx‖1 is known as a one-dimensional total variation function and
is actually only one instance of many variants of total variation functions. Problem
(12.24) fits model (12.1) with E = Rn,V = Rn−1, f(x) = 1

2‖x− d‖22, g(y) = λ‖y‖1,
and A(x) ≡ Dx. In order to explicitly write the DPG and FDPG methods, we note
that

• argmaxx{〈v,x〉 − f(x)} = v + d for any v ∈ E;

• ‖A‖2 = ‖D‖22,2 ≤ 4;

• σ = 1;

• AT (y) = DTy for any y ∈ R
n−1;

• proxLg(y) = TλL(y).

The bound on ‖D‖2,2 was achieved by the following argument:

‖Dx‖22 =

n−1∑
i=1

(xi − xi+1)
2 ≤ 2

n−1∑
i=1

(x2i + x2i+1) ≤ 4‖x‖2.

The DPG and FDPG methods with L = 4 are explicitly written below.

68Since in this chapter all underlying spaces are Euclidean and since the standing assumption is
that (unless otherwise stated) Rn is embedded with the dot product, it follows that Rn is endowed
with the l2-norm.
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12.4. Examples I 365

Algorithm 6 [DPG for solving (12.24)]

• Initialization: y0 ∈ Rn−1.

• General step (k ≥ 0):

(a) xk = DTyk + d;

(b) yk+1 = yk − 1
4Dxk + 1

4T4λ(Dxk − 4yk).

Algorithm 7 [FDPG for solving (12.24)]

• Initialization: w0 = y0 ∈ Rn−1, t0 = 1.

• General step (k ≥ 0):

(a) uk = DTwk + d;

(b) yk+1 = wk − 1
4Duk + 1

4T4λ(Duk − 4wk);

(c) tk+1 =
1+

√
1+4t2k
2 ;

(d) wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).

Example 12.13. Consider the case where n = 1000 and the “clean” (actually
unknown) signal is the vector dtrue, which is a discretization of a step function:

dtruei =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, 1 ≤ i ≤ 250,

3, 251 ≤ i ≤ 500,

0, 501 ≤ i ≤ 750,

2, 751 ≤ i ≤ 1000.

The observed vector d was constructed by adding independently to each component
of dtrue a normally distributed noise with zero mean and standard deviation 0.05.
The true and noisy signals can be seen in Figure 12.2. We ran 100 iterations of
Algorithms 6 (DPG) and 7 (FDPG) initialized with y0 = 0, and the resulting
signals can be seen in Figure 12.3. Clearly, the FDPG method produces a much
better quality reconstruction of the original step function than the DPG method.
This is reflected in the objective function values of the vectors produced by each of
the methods. The objective function values of the vectors generated by the DPG
and FDPG methods after 100 iterations are 9.1667 and 8.4621, respectively, where
the optimal value is 8.3031.

12.4.4 Two-Dimensional Total Variation Denoising

In the two-dimensional total variation denoising problem, we are given an observed
noisy matrix d ∈ Rm×n, and we seek to solve the problem

min
x∈Rm×n

{
1

2
‖x− d‖2F + λTV(x)

}
. (12.25)
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Figure 12.2. True signal (left) and noisy signal (right).
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Figure 12.3. Results of the DPG and FDPG methods.

There are many possible choices for the two-dimensional total variation function
TV(·). Two popular choices are the isotropic TV defined for any x ∈ Rm×n by

TVI(x) =
m−1∑
i=1

n−1∑
j=1

√
(xi,j − xi,j+1)2 + (xi,j − xi+1,j)2 (12.26)

+

n−1∑
j=1

|xm,j − xm,j+1|+
m−1∑
i=1

|xi,n − xi+1,n|

and the l1-based, anisotropic TV defined by

x ∈ R
m×n, TVl1(x) =

m−1∑
i=1

n−1∑
j=1

{|xi,j − xi,j+1|+ |xi,j − xi+1,j |}

+

n−1∑
j=1

|xm,j − xm,j+1|+
m−1∑
i=1

|xi,n − xi+1,n|.
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12.4. Examples I 367

Problem (12.25) fits the main model (12.1) with E = Rm×n,V = Rm×(n−1) ×
R(m−1)×n, f(x) = 1

2‖x − d‖2F , and A(x) = (px,qx), where px ∈ Rm×(n−1) and

qx ∈ R(m−1)×n are given by

pxi,j = xi,j − xi,j+1, i = 1, 2, . . . ,m, j = 1, 2, . . . , n− 1,

qxi,j = xi,j − xi+1,j , i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n.

The function g : V → R is given in the isotropic case by

g(p,q) = gI(p,q) ≡
m−1∑
i=1

n−1∑
j=1

√
p2i,j + q2i,j +

n−1∑
j=1

|pm,j|+
m−1∑
i=1

|qi,n|

and in the anisotropic case by

g(p,q) = gl1(p,q) ≡
m∑
i=1

n−1∑
j=1

|pi,j |+
m−1∑
i=1

n∑
j=1

|qi,j |.

Since gI and gl1 are a separable sum of either absolute values or l2 norms, it is easy
to compute their prox mappings using Theorem 6.6 (prox of separable functions),
Example 6.8 (prox of the l1-norm), and Example 6.19 (prox of Euclidean norms)
and obtain that for any p ∈ R

m×(n−1) and q ∈ R
(m−1)×n,

proxλgI(p,q) = (p̄, q̄),

where

p̄i,j =
(
1− λ/max

{√
p2i,j + q2i,j , λ

})
pi,j , i = 1, 2, . . . ,m− 1, j = 1, 2, . . . n− 1,

p̄m,j = Tλ(pm,j), j = 1, 2, . . . , n− 1,

q̄i,j =
(
1− λ/max

{√
p2i,j + q2i,j , λ

})
qi,j , i = 1, 2, . . . ,m− 1, j = 1, 2, . . . n− 1,

q̄i,n = Tλ(qi,n), i = 1, 2, . . . ,m− 1,

and
proxλgl1 (p,q) = (p̃, q̃),

where

p̃i,j = Tλ(pi,j), i = 1, 2, . . . ,m, j = 1, 2, . . . n− 1,

q̃i,j = Tλ(qi,j), i = 1, 2, . . . ,m− 1, j = 1, 2, . . . , n.

The last detail that is missing in order to explicitly write the DPG or FDPGmethods
for solving problem (12.25) is the computation of AT : V → E at points in V. For
that, note that for any x ∈ E and (p,q) ∈ V,

〈A(x), (p,q)〉 =
m∑
i=1

n−1∑
j=1

(xi,j − xi,j+1)pi,j +
m−1∑
i=1

n∑
j=1

(xi,j − xi+1,j)qi,j

=

m∑
i=1

n∑
j=1

xi,j(pi,j + qi,j − pi,j−1 − qi−1,j)

= 〈x,AT (p,q)〉,
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368 Chapter 12. Dual-Based Proximal Gradient Methods

where we use a convention that

pi,0 = pi,n = q0,j = qm,j = 0 for any i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Therefore, with the above convention in mind, for any (p,q) ∈ V,

AT (p,q)i,j = pi,j + qi,j − pi,j−1 − qi−1,j , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

We also want to compute an upper bound on ‖A‖2. This can be done using the
same technique as in the one-dimensional case; note that for any x ∈ Rm×n,

‖A(x)‖2 =

m∑
i=1

n−1∑
j=1

(xi,j − xi,j+1)
2 +

m−1∑
i=1

n∑
j=1

(xi,j − xi+1,j)
2

≤ 2

m∑
i=1

n−1∑
j=1

(x2i,j + x2i,j+1) + 2

m−1∑
i=1

n∑
j=1

(x2i,j + x2i+1,j)

≤ 8

n∑
i=1

m∑
j=1

x2i,j .

Therefore, ‖A‖2 ≤ 8. We will now explicitly write the FDPG method for solving
the two-dimensional anisotropic total variation problem, meaning problem (12.25)
with g = gl1 . For the stepsize, we use L = 8.

Algorithm 8 [FDPG for solving (12.25) with g = λTVl1
]

• Initialization: p̃0 = p0 ∈ Rm×(n−1), q̃0 = q0 ∈ R(m−1)×n, t0 = 1.

• General step (k ≥ 0):

(a) compute uk ∈ Rm×n by setting for i = 1, 2, . . . ,m, j = 1, 2, . . . , n,

uki,j = p̃ki,j + q̃ki,j − p̃ki,j−1 − q̃ki−1,j + di,j ;

(b) set (pk+1,qk+1) as

pk+1
i,j = p̃ki,j −

1

8
(uki,j − uki,j+1) +

1

8
T8λ(uki,j − uki,j+1 − 8p̃ki,j),

qk+1
i,j = q̃ki,j −

1

8
(uki,j − uki+1,j) +

1

8
T8λ(uki,j − uki+1,j − 8q̃ki,j);

(c) tk+1 =
1+

√
1+4t2k
2 ;

(d) (p̃k+1, q̃k+1) = (pk+1,qk+1) +
(
tk−1
tk+1

)
(pk+1 − pk,qk+1 − qk).
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12.5. The Dual Block Proximal Gradient Method 369

12.5 The Dual Block Proximal Gradient Method

12.5.1 Preliminaries

In this section we will consider the problem

min
x∈E

{
f(x) +

p∑
i=1

gi(x)

}
, (12.27)

where the following assumptions are made.

Assumption 12.14.

(A) f : E → (−∞,+∞] is proper closed and σ-strongly convex (σ > 0).

(B) gi : E → (−∞,+∞] is proper closed and convex for any i ∈ {1, 2, . . . , p}.

(C) ri(dom(f)) ∩ (∩pi=1ri(dom(gi))) 
= ∅.

Problem (12.27) is actually a generalization of the projection problem dis-
cussed in Section 12.4.2, and we can use a similar observation to the one made there
and note that problem (12.27) fits model (12.1) with V = Ep, g(x1,x2, . . . ,xp) =∑p

i=1 gi(xi), and A : E → V given by

A(z) = (z, z, . . . , z︸ ︷︷ ︸
p times

) for any z ∈ E.

Noting that

• ‖A‖2 = p;

• AT (y) =
∑p

i=1 yi for any y ∈ Ep;

• proxLg(v1,v2, . . . ,vp) = (proxLg1(v1), proxLg2(v2), . . . , proxLgp(vp)) for any
vi ∈ E, i = 1, 2, . . . , p,

we can explicitly write the FDPG method with L = ‖A‖2
σ = p

σ .

Algorithm 9 [FDPG for solving (12.27)]

• Initialization: w0 = y0 ∈ Ep, t0 = 1.

• General step (k ≥ 0):

(a) uk = argmaxu∈E
{
〈u,
∑p

i=1 w
k
i 〉 − f(u)

}
;

(b) yk+1
i = wk

i − σ
pu

k + σ
pprox p

σ gi
(uk − p

σw
k
i ), i = 1, 2, . . . , p;

(c) tk+1 =
1+

√
1+4t2k
2 ;

(d) wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).

The primal sequence is given by

xk = argmaxx∈E

{〈
x,
∑p

i=1 y
k
i

〉
− f(x)

}
.
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370 Chapter 12. Dual-Based Proximal Gradient Methods

12.5.2 The Dual Block Proximal Gradient Method

Note that the stepsize taken at each iteration of Algorithm 9 is σ
p , which might

be extremely small when the number of blocks (p) is large. The natural question
is therefore whether it is possible to define a dual-based method whose stepsize is
independent of the dimension. For that, let us consider the dual of problem (12.27),
meaning problem (12.4). Keeping in mind that AT (y) =

∑p
i=1 yi and the fact that

g∗(y) =
∑p

i=1 g
∗
i (yi) (see Theorem 4.12), we obtain the following form of the dual

problem:

qopt = max
y∈Ep

⎧⎪⎨⎪⎩−f∗
(∑p

i=1 yi

)
−
∑p

i=1 g
∗
i (−yi)︸ ︷︷ ︸
Gi(yi)

⎫⎪⎬⎪⎭ . (12.28)

Since the nonsmooth part in (12.28) is block separable, we can employ a block
proximal gradient method (see Chapter 11) on the dual problem (in its minimization
form). Suppose that the current point is yk = (yk1 ,y

k
2 , . . . ,y

k
p). At each iteration

of a block proximal gradient method we pick an index i according to some rule and
perform a proximal gradient step only on the ith block which is thus updated by
the formula

yk+1
i = proxσGi

(
yki − σ∇f∗

(∑p
j=1 y

k
j

))
.

The stepsize was chosen to be σ since f is proper closed and σ-strongly con-
vex, and thus, by the conjugate correspondence theorem (Theorem 5.26), f∗ is
1
σ -smooth, from which it follows that the block Lipschitz constants of the function
(y1,y2, . . . ,yp) �→ f∗(

∑p
i=1 yi) are 1

σ . Thus, the constant stepsize can be taken
as σ. We can now write a dual representation of the dual block proximal gradient
(DBPG) method.

The Dual Block Proximal Gradient (DBPG) Method—dual repre-
sentation

• Initialization: pick y0 = (y0
1,y

0
2, . . . ,y

0
p) ∈ Ep.

• General step (k ≥ 0):

– pick an index ik ∈ {1, 2, . . . , p};

– compute yk+1
j =

⎧⎪⎨⎪⎩ proxσGik

(
ykik − σ∇f∗(

∑p
j=1 y

k
j )
)
, j = ik,

ykj , j 
= ik.

We can utilize Lemma 12.5 to obtain a primal representation of the general
step of the DBPG method.
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12.5. The Dual Block Proximal Gradient Method 371

Lemma 12.15. Let f and g1, g2, . . . , gp satisfy properties (A) and (B) of Assump-
tion 12.14. Let i ∈ {1, 2, . . . , p} and Gi(yi) ≡ g∗i (−yi). Let L > 0. Then yi ∈ E

and v ∈ Ep satisfy the relation

yi = prox 1
LGi

(
vi −

1

L
∇f∗

(∑p
j=1 vj

))

if and only if

yi = vi −
1

L
x̃+

1

L
proxLgi (x̃− Lvi) ,

where

x̃ = argmaxx∈E

{〈
x,
∑p

j=1 vj

〉
− f(x)

}
.

Proof. Follows by invoking Lemma 12.5 with V = E, A = I, b =
∑

j =i vj , g = gi,
y = yi, and v = vi.

Using Lemma 12.15, we can now write a primal representation of the DBPG
method.

The Dual Block Proximal Gradient (DBPG) Method—primal repre-
sentation

Initialization: pick y0 = (y0
1,y

0
2, . . . ,y

0
p) ∈ E.

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick ik ∈ {1, 2, . . . , p};

(b) set xk = argmaxx∈E

{
〈x,
∑p

j=1 y
k
j 〉 − f(x)

}
;

(c) set yk+1
j =

⎧⎪⎨⎪⎩ ykik − σxk + σproxgi/σ
(
xk − ykik/σ

)
, j = ik,

ykj , j 
= ik.

Note that the derived DBPG method is a functional decomposition method, as
it utilizes only one of the functions g1, g2, . . . , gp at each iteration, and in addition
the computation involving the function f (step (b)) does not involve any other
function. Thus, we obtained that in this case a variables decomposition method in
the dual space gives rise to a functional decomposition method in the primal space.

What is missing from the above description of the DBPG method is the index
selection strategy, meaning the rule for choosing ik at each iteration. We will
consider two variations.
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372 Chapter 12. Dual-Based Proximal Gradient Methods

• Cyclic. ik = (k mod p) + 1.

• Randomized. ik is randomly picked from {1, 2, . . . , p} by a uniform
distribution.

12.5.3 Convergence Analysis

The rate of convergence of the DBPG method is a simple consequence of the rates
of convergence already established for the block proximal gradient method in Chap-
ter 11 combined with the primal-dual relation presented in Lemma 12.7.

Cyclic Block Order

Recall that since the model (12.27) is a special case of the general model (12.1)
(with V = E

p,A : z �→ (z, z, . . . , z), g(x) =
∑p
i=1 gi(xi)), then under Assumption

12.14 the strong duality theorem (Theorem 12.2) holds, and thus the dual problem
(12.28) has a nonempty optimal set. We will denote the set of dual optimal solutions
by Λ∗. The following assumption is required to present a convergence result for the
DBPG method with a cyclic index selection strategy.

Assumption 12.16. For any α > 0, there exists Rα > 0 such that

max
y,y∗∈Ep

{‖y− y∗‖ : q(y) ≥ α,y∗ ∈ Λ∗} ≤ Rα,

where q(y) ≡ −f∗(
∑p

i=1 yi)−
∑p

i=1 g
∗
i (−yi).

Theorem 12.17 (O(1/k) rate of convergence of DBPG with cyclic order).
Suppose that Assumptions 12.14 and 12.16 hold. Let {xk}k≥0 and {yk}k≥0 be the
primal and dual sequences generated by the DBPG method with cyclic index selection
strategy for solving problem (12.27). Then for any k ≥ 2,

(a) qopt − q(ypk) ≤ max
{(

1
2

)(k−1)/2
(qopt − q(y0)), 8p(p+1)2R2

σ(k−1)

}
;

(b) ‖xpk − x∗‖2 ≤ 2
σ max

{(
1
2

)(k−1)/2
(qopt − q(y0)), 8p(p+1)2R2

σ(k−1)

}
.

In the above two formulas R = Rq(y0).

Proof. (a) The proof follows by invoking Theorem 11.18 while taking into account
that in this case the constants in (11.24) are given by Lmax = Lmin = 1

σ , Lf = p
σ .

(b) By the primal-dual relation, Lemma 12.7, ‖xpk−x∗‖2 ≤ 2
σ (qopt− q(ypk)),

which, combined with part (a), yields the inequality of part (b).

Randomized Block Order

A direct result of the O(1/k) rate of convergence of the RBPG method presented
in Theorem 11.25 along with the primal-dual relation (Lemma 12.7) yields the
following result on the convergence of the DBPG method with random index selec-
tion strategy. As in Section 11.5, we will use the notation of the random variable
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12.5. The Dual Block Proximal Gradient Method 373

ξk ≡ {i0, i1, . . . , ik}. Note that in the randomized setting we do not require As-
sumption 12.16 to hold.

Theorem 12.18 (O(1/k) rate of convergence of DBPG with randomized
order). Suppose that Assumption 12.14 holds. Let {xk}k≥0 and {yk}k≥0 be primal
and dual sequences generated by the DBPG method with randomized index selection
strategy. Then for any k ≥ 0,

(a) qopt − Eξk(q(y
k+1)) ≤ p

p+k+1

(
1
2σ ‖y0 − y∗‖2 + qopt − q(y0)

)
;

(b) Eξk‖xk+1 − x∗‖2 ≤ 2p
σ(p+k+1)

(
1
2σ ‖y0 − y∗‖2 + qopt − q(y0)

)
.

12.5.4 Acceleration in the Two-Block Case
69

Both the deterministic and the randomized DBPG methods are not accelerated
methods, and consequently it was only possible to show that they exhibit an O(1/k)
rate of convergence. In the case where p = 2, we will show that it is actually possible
to derive an accelerated dual block proximal gradient method by using a simple trick.
For that, note that when p = 2, the model amounts to

fopt = min
x∈E

{F (x) ≡ f(x) + g1(x) + g2(x)}. (12.29)

We can rewrite the problem as

min
x∈E

{f̃(x) + g2(x)}, (12.30)

where f̃ = f + g1. If Assumption 12.14 holds with p = 2, then f̃ is proper closed
and σ-strongly convex, g2 is proper closed and convex, and the regularity condition
ri(dom(f̃)) ∩ ri(dom(g2)) 
= ∅ is satisfied. This means that Assumption 12.1 holds
for f = f̃ , g = g2, and A = I. We can now define the accelerated dual block proximal
gradient (ADBPG), which is the FDPG method with stepsize σ employed on the
model (12.1) with f = f̃ , g = g2, and A = I.

The ADBPG Method

Initialization: w0 = y0 ∈ E, t0 = 1.
General step (k ≥ 0):

(a) uk = argmaxu
{
〈u,wk〉 − f(u)− g1(u)

}
;

(b) yk+1 = wk − σuk + σproxg2/σ(u
k −wk/σ);

(c) tk+1 =
1+

√
1+4t2k
2 ;

(d) wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).

69The accelerated method ADBPG is a different representation of the accelerated method pro-
posed by Chambolle and Pock in [41].

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



374 Chapter 12. Dual-Based Proximal Gradient Methods

A direct consequence of Theorem 12.10 is the following result on the rate of
convergence of the ADBPG method.

Theorem 12.19 (O(1/k2) rate of convergence of ADBPG). Suppose that
Assumption 12.14 holds with p = 2, and let {yk}k≥0 be the sequence generated by
the ADBPG method. Then for any optimal solution y∗ of the dual problem

min
y∈E

{(f̃)∗(y) + g∗2(−y)}

and k ≥ 1, it holds that

‖xk − x∗‖2 ≤ 4‖y0 − y∗‖2
σ2(k + 1)2

,

where xk = argmaxx
{
〈x,yk〉 − f(x)− g1(x)

}
.

Remark 12.20. When f(x) = 1
2‖x−d‖2 for some d ∈ E, step (a) of the ADBPG

can be written as a prox computation:

uk = proxg1(d+wk).

Remark 12.21. Note that the ADBPG is not a full functional decomposition
method since step (a) is a computation involving both f and g1, but it still separates
between g1 and g2. The method has two main features. First, it is an accelerated
method. Second, the stepsize taken in the method is σ, in contrast to the stepsize of
σ
2 that is used in Algorithm 9, which is another type of an FDPG method.

12.6 Examples II

Example 12.22 (one-dimensional total variation denoising). In this example
we will compare the performance of the ADBPG method and Algorithm 9 (with
p = 2)—both are FDPG methods, although quite different. We will consider the
one-dimensional total variation problem (see also Section 12.4.3)

fopt = min
x∈Rn

{
F (x) ≡ 1

2
‖x− d‖22 + λ

n−1∑
i=1

|xi−1 − xi|
}
, (12.31)

where d ∈ Rn and λ > 0. The above problem can be written as

min
x∈Rn

{f(x) + g1(x) + g2(x)},

where

f(x) =
1

2
‖x− d‖22,

g1(x) = λ

�n2 �∑
i=1

|x2i−1 − x2i|,

g2(x) = λ

�n−1
2 �∑
i=1

|x2i − x2i+1|.

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



12.6. Examples II 375
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Algorithm 9
ADBPG

Figure 12.4. Comparison of the ADBPG method and Algorithm 9 em-
ployed on the one-dimensional total variation denoising problem.

By Example 6.17 we have that the prox of λ times the two-dimensional function
h(y, z) = |y − z| is given by

proxλh(y, z) = (y, z) +
1

2λ2
(T2λ2(λy − λz)− λy + λz)(λ,−λ)

= (y, z) +
1

2
([|y − z| − 2λ]+sgn(y − z)− y + z)(1,−1).

Therefore, using the separability of g1 w.r.t. the pairs of variables {x1, x2},
{x3, x4}, . . . , it follows that

proxg1(x) = x+
1

2

�n2 �∑
i=1

([|x2i−1−x2i|−2λ]+sgn(x2i−1−x2i)−x2i−1+x2i)(e2i−1−e2i),

and similarly

proxg2(x) = x+
1

2

�n−1
2 �∑
i=1

([|x2i−x2i+1|−2λ]+sgn(x2i−x2i+1)−x2i+x2i+1)(e2i−e2i+1).

Equipped with the above expressions for proxg1 and proxg2 (recalling that step (a)
only requires a single computation of proxg1 ; see Remark 12.20), we can employ
the ADBPG method and Algorithm 9 on problem (12.31). The computational
effort per iteration in both methods is almost identical and is dominated by single
evaluations of the prox mappings of g1 and g2. We ran 1000 iterations of both
algorithms starting with a dual vector which is all zeros. In Figure 12.4 we plot
the distance in function values70 F (xk) − fopt as a function of the iteration index
k. Evidently, the ADBPG method exhibits the superior performance. Most likely,
the reason is the fact that the ADBPG method uses a larger stepsize (σ) than the
one used by Algorithm 9 (σ2 ).

70Since the specific example is unconstrained, the distance in function values is indeed in some
sense an “optimality measure.”
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376 Chapter 12. Dual-Based Proximal Gradient Methods

Example 12.23 (two-dimensional total variation denoising). Consider the
isotropic two-dimensional total variation problem

min
x∈Rm×n

{
1

2
‖x− d‖2F + λTVI(x)

}
,

where d ∈ Rm×n, λ > 0, and TVI is given in (12.26). It does not seem possible
to decompose TVI into two functions whose prox can be directly computed as in
the one-dimensional case. However, a decomposition into three separable functions
(w.r.t. triplets of variables) is possible. To describe the decomposition, we introduce
the following notation. Let Dk denote the set of indices that correspond to the
elements of the kth diagonal of an m × n matrix, where D0 represents the indices
set of the main diagonal, and Dk for k > 0 and k < 0 stand for the diagonals above
and below the main diagonal, respectively. In addition, consider the partition of
the diagonal indices set, {−(m− 1), . . . , n− 1}, into three sets

Ki ≡
{
k ∈ {−(m− 1), . . . , n− 1} : (k + 1− i) mod 3 = 0

}
, i = 1, 2, 3.

With the above notation, we are now ready to write the function TVI as

TVI(x) =

m∑
i=1

n∑
j=1

√
(xi,j − xi,j+1)2 + (xi,j − xi+1,j)2

=
∑
k∈K1

∑
(i,j)∈Dk

√
(xi,j − xi,j+1)2 + (xi,j − xi+1,j)2

+
∑
k∈K2

∑
(i,j)∈Dk

√
(xi,j − xi,j+1)2 + (xi,j − xi+1,j)2

+
∑
k∈K3

∑
(i,j)∈Dk

√
(xi,j − xi,j+1)2 + (xi,j − xi+1,j)2

= ψ1(x) + ψ2(x) + ψ3(x),

where we assume in the above expressions that xi,n+1 = xi,n and xm+1,j = xm,j .
The fact that each of the functions ψi is separable w.r.t. triplets of variables {xi,j ,
xi+1,j , xi,j+1} is evident from the illustration in Figure 12.5.

The denoising problem can thus be rewritten as

min
x∈Rm×n

{
1

2
‖x− d‖2F + λψ1(x) + λψ2(x) + λψ3(x)

}
.

It is not possible to employ the ADBPG method since the nonsmooth part is decom-
posed into three functions. However, it is possible to employ the DBPG method,
which has no restriction on the number of functions. The algorithm requires eval-
uating a prox mapping of one of the functions λψi at each iteration. By the sep-
arability of these functions, it follows that each prox computation involves several
prox computations of three-dimensional functions of the form λh, where

h(x, y, z) =
√
(x− y)2 + (x− z)2.
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12.6. Examples II 377

ψ1 ψ2 ψ3

Figure 12.5. The decomposition of a 16×12 pixels Mario image according
to the isotropic TV into three separable functions. The images are partitioned into
blocks of three pixels positioned in an r-shaped structure. Each block encompasses
the three pixels that form the term

√
(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2. Summing

over all the terms represented by the blocks of any of the above images yields the
appropriate separable function. Reprinted with permission from Elsevier. [23]

The prox of λh can be computed using Lemma 6.68 and is given by

proxλh(x) =

⎧⎪⎨⎪⎩ x−AT (AAT )−1Ax, ‖(AAT )−1Ax‖2 ≤ λ,

x−AT (AAT + α∗I)−1Ax, ‖(AAT )−1Ax‖2 > λ,

where α∗ is the unique root of the decreasing function

g(α) = ‖(AAT + α∗I)−1Ax‖22 − λ2

and A is the matrix

A =

⎛⎜⎝1 −1 0

1 0 −1

⎞⎟⎠ .
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Chapter 13

The Generalized
Conditional Gradient
Method

Underlying Spaces: In this chapter, all the underlying spaces are Euclidean.

13.1 The Frank–Wolfe/Conditional Gradient Method

Consider the problem

min{f(x) : x ∈ C}, (13.1)

where C ⊆ E is a nonempty convex and compact set and f : E → (−∞,∞] is a
convex function satisfying C ⊆ dom(f). We further assume that dom(f) is open and
that f is differentiable over dom(f). One method that can be employed in order to
solve the problem is the projected gradient method (see Section 10.2) whose update
step is

xk+1 = PC(x
k − tk∇f(xk)),

with tk being an appropriately chosen stepsize. In this chapter we will consider an
alternative approach that does not require the evaluation of the orthogonal projec-
tion operator at each iteration. Instead, the approach, known as the conditional
gradient method or Frank–Wolfe algorithm, computes the next step as a convex
combination of the current iterate and a minimizer of a linearized version of the
objective function over C.

The Conditional Gradient Method

Initialization: pick x0 ∈ C.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) compute pk ∈ argminp∈C〈p,∇f(xk)〉;

(b) choose tk ∈ [0, 1] and set xk+1 = xk + tk(p
k − xk).

The conditional gradient approach is potentially beneficial in cases where compu-
tation of a linear oracle over the feasible set (that is, computation of a minimizer of

379
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380 Chapter 13. The Generalized Conditional Gradient Method

a linear function over C) is a simpler task than evaluating the orthogonal projec-
tion onto C. We will actually analyze an extension of the method that tackles the
problem of minimizing a composite function f + g, where the case g = δC brings us
back to the model (13.1).

13.2 The Generalized Conditional Gradient Method

13.2.1 Model and Method

Consider the composite problem

min {F (x) ≡ f(x) + g(x)} , (13.2)

where we assume the following set of properties.

Assumption 13.1.

(A) g : E → (−∞,∞] is proper closed and convex and dom(g) is compact.

(B) f : E → (−∞,∞] is Lf -smooth over dom(f) (Lf > 0), which is assumed to
be an open and convex set satisfying dom(g) ⊆ dom(f).

(C) The optimal set of problem (13.2) is nonempty and denoted by X∗. The opti-
mal value of the problem is denoted by Fopt.

It is not difficult to deduce that property (C) is implied by properties (A) and
(B). The generalized conditional gradient method for solving the composite model
(13.2) is similar to the conditional gradient method, but instead of linearizing the
entire objective function, the algorithm computes a minimizer of the sum of the
linearized smooth part f around the current iterate and leaves g unchanged.

The Generalized Conditional Gradient Method

Initialization: pick x0 ∈ dom(g).
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) compute pk ∈ argminp∈E
{
〈p,∇f(xk)〉+ g(p)

}
;

(b) choose tk ∈ [0, 1] and set xk+1 = xk + tk(p
k − xk).

13.2.2 The Conditional Gradient Norm

Throughout this chapter we will use the following notation:

p(x) ∈ argminp {〈p,∇f(x)〉 + g(p)} . (13.3)

Of course, p(x) is not uniquely defined in the sense that the above minimization
problem might have multiple optimal solutions. We assume that there exists some
rule for choosing an optimal solution whenever the optimal set of (13.3) is not a
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13.2. The Generalized Conditional Gradient Method 381

singleton and that the vector pk computed by the generalized conditional gradient
method is chosen by the same rule, meaning that pk = p(xk). We can write the
update step of the generalized conditional gradient method as

xk+1 = xk + tk(p(x
k)− xk).

A natural optimality measure in the context of proximal gradient methods is
the gradient mapping (see Section 10.3.2). However, the analysis of the conditional
gradient method relies on a different optimality measure, which we will refer to as
the conditional gradient norm.

Definition 13.2 (conditional gradient norm). Suppose that f and g satisfy
properties (A) and (B) of Assumption 13.1. Then the conditional gradient norm
is the function S : dom(f) → R defined by

S(x) ≡ 〈∇f(x),x − p(x)〉+ g(x)− g(p(x)).

Remark 13.3. The conditional gradient norm obviously depends on f and g, so
a more precise notation would be Sf,g(x). However, since the identities of f and g
will be clear from the context, we will keep the notation S(x).

Remark 13.4. By the definition of p(x) (equation (13.3)), we can also write S(x)
as

S(x) = max
p∈E

{〈∇f(x),x − p〉+ g(x)− g(p)} . (13.4)

The following lemma shows how to write the conditional gradient norm in
terms of the conjugate of g.

Lemma 13.5. Suppose that f and g satisfy properties (A) and (B) of Assumption
13.1. Then for any x ∈ dom(f),

S(x) = 〈∇f(x),x〉 + g(x) + g∗(−∇f(x)). (13.5)

Proof. Follows by the definition of the conjugate function:

S(x) = max
p∈E

{〈∇f(x),x− p〉+ g(x)− g(p)}

= 〈∇f(x),x〉 + g(x) + max
p∈E

{〈−∇f(x),p〉 − g(p)}

= 〈∇f(x),x〉 + g(x) + g∗(−∇f(x)).

A direct consequence of Lemma 13.5 is that S(·) is an optimality measure in
the sense that it is always nonnegative and is equal to zero only at stationary points
of problem (13.2).

Theorem 13.6 (conditional gradient norm as an optimality measure). Sup-
pose that f and g satisfy properties (A) and (B) of Assumption 13.1. Then
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382 Chapter 13. The Generalized Conditional Gradient Method

(a) S(x) ≥ 0 for any x ∈ dom(f);

(b) S(x∗) = 0 if and only if −∇f(x∗) ∈ ∂g(x∗), that is, if and only if x∗ is a
stationary point of problem (13.2).

Proof. (a) Follows by the expression (13.5) for the conditional gradient norm and
Fenchel’s inequality (Theorem 4.6).

(b) By part (a), it follows that S(x∗) = 0 if and only if S(x∗) ≤ 0, which is
the same as the relation (using the expression (13.4) for S(x∗))

〈∇f(x∗),x∗ − p〉+ g(x∗)− g(p) ≤ 0 for all p ∈ E.

After some rearrangement of terms, the above can be rewritten as

g(p) ≥ g(x∗) + 〈−∇f(x∗),p− x∗〉,

which is equivalent to the relation −∇f(x∗) ∈ ∂g(x∗), namely, to stationarity (see
Definition 3.73).

The basic inequality that will be used in the analysis of the generalized con-
ditional gradient method is the following recursive inequality.

Lemma 13.7 (fundamental inequality for generalized conditional gradi-
ent). Suppose that f and g satisfy properties of (A) and (B) of Assumption 13.1.
Let x ∈ dom(g) and t ∈ [0, 1]. Then

F (x+ t(p(x) − x)) ≤ F (x)− tS(x) +
t2Lf
2

‖p(x)− x‖2. (13.6)

Proof. Using the descent lemma (Lemma 5.7), the convexity of g, and the notation
p+ = p(x), we can write the following:

F (x+ t(p+ − x)) = f(x+ t(p+ − x)) + g(x+ t(p+ − x))

≤ f(x)− t〈∇f(x),x− p+〉+ t2Lf
2

‖p+ − x‖2 + g((1− t)x+ tp+)

≤ f(x)− t〈∇f(x),x− p+〉+ t2Lf
2

‖p+ − x‖2 + (1− t)g(x) + tg(p+)

= F (x)− t(〈∇f(x),x − p+〉+ g(x)− g(p+)) +
t2Lf
2

‖p+ − x‖2

= F (x)− tS(x) +
t2Lf
2

‖p+ − x‖2.

13.2.3 Convergence Analysis in the Nonconvex Case

Note that we do not assume at this point that f is convex, and therefore con-
vergence (if any) will be proven to stationary points. Before we delve into the
convergence analysis, we mention the different options of stepsize strategies that
will be considered.
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13.2. The Generalized Conditional Gradient Method 383

• Predefined diminishing stepsize. tk = 2
k+2 .

• Adaptive stepsize. tk = min
{
1, S(xk)

Lf‖pk−xk‖2

}
.

• Exact line search. tk ∈ argmint∈[0,1]F (x
k + t(pk − xk)).

The motivation for considering the adaptive stepsize comes from the funda-

mental inequality (13.6)—it is easy to verify that tk = min
{
1, S(xk)

Lf‖pk−xk‖2

}
is the

minimizer of the right-hand side of (13.6) w.r.t. t ∈ [0, 1] when x = xk. Much like
the analysis of the proximal gradient method, the convergence of the generalized
conditional gradient method is based on a sufficient decrease property.

Lemma 13.8 (sufficient decrease for the generalized conditional gradient
method). Suppose that f and g satisfy properties (A) and (B) of Assumption 13.1,
and let {xk}k≥0 be the sequence generated by the generalized conditional gradient
method for solving problem (13.2) with stepsizes chosen by either the adaptive or
exact line search strategies. Then for any k ≥ 0,

F (xk)− F (xk+1) ≥ 1

2
min

{
S(xk),

S2(xk)

LfΩ2

}
, (13.7)

where Ω be an upper bound on the diameter of dom(g):

Ω ≥ max
x,y∈dom(g)

‖x− y‖.

Proof. Let k ≥ 0 and let x̃k = xk + sk(p
k − xk), where

sk = min

{
1,

S(xk)

Lf‖xk − pk‖2

}
.

By the fundamental inequality (13.6) invoked with x = xk and t = sk, we have

F (xk)− F (x̃k) ≥ skS(x
k)− s2kLf

2
‖pk − xk‖2. (13.8)

There are two options: Either S(xk)
Lf‖xk−pk‖2 ≤ 1, and in this case sk = S(xk)

Lf‖xk−pk‖2 ,

and hence, by (13.8),

F (xk)− F (x̃k) ≥ S2(xk)

2Lf‖pk − xk‖2 ≥ S2(xk)

2LfΩ2
.

Or, on the other hand, if
S(xk)

Lf‖xk − pk‖2 ≥ 1, (13.9)

then sk = 1, and by (13.8),

F (xk)− F (x̃k) ≥ S(xk)− Lf
2

‖pk − xk‖2
(13.9)

≥ 1

2
S(xk).
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384 Chapter 13. The Generalized Conditional Gradient Method

Combining the two cases, we obtain

F (xk)− F (x̃k) ≥ 1

2
min

{
S(xk),

S2(xk)

LfΩ2

}
. (13.10)

If the adaptive stepsize strategy is used, then x̃k = xk+1 and (13.10) is the same as
(13.7). If an exact line search strategy is employed, then

F (xk+1) = min
t∈[0,1]

F (xk + t(pk − xk)) ≤ F (xk + sk(p
k − xk)) = F (x̃k),

which, combined with (13.10), implies that also in this case (13.7) holds.

Using Lemma 13.8 we can establish the main convergence result for the gen-
eralized conditional gradient method with stepsizes chosen by either the adaptive
or exact line search strategies.

Theorem 13.9 (convergence of the generalized conditional gradient). Sup-
pose that Assumption 13.1 holds, and let {xk}k≥0 be the sequence generated by the
generalized conditional gradient method for solving problem (13.2) with stepsizes
chosen by either the adaptive or exact line search strategies. Then

(a) for any k ≥ 0, F (xk) ≥ F (xk+1) and F (xk) > F (xk+1) if xk is not a station-
ary point of problem (13.2);

(b) S(xk) → 0 as k → ∞;

(c) for any k ≥ 0,

min
n=0,1,...,k

S(xn) ≤ max

{
2(F (x0)− Fopt)

k + 1
,

√
2LfΩ2(F (x0)− Fopt)√

k + 1

}
,

(13.11)
where Ω is an upper bound on the diameter of dom(g);

(d) all limit points of the sequence {xk}k≥0 are stationary points of problem (13.2).

Proof. (a) The monotonicity of {F (xk)}k≥0 is a direct result of the sufficient
decrease inequality (13.7) and the nonnegativity of S(xk) (Theorem 13.6(a)). As
for the second claim, if xk is not a stationary point of problem (13.2), then S(xk) > 0
(see Theorem 13.6(b)), and hence, by the sufficient decrease inequality, F (xk) >
F (xk+1).

(b) Since {F (xk)}k≥0 is nonincreasing and bounded below (by Fopt), it follows
that it is convergent, and in particular, F (xk)−F (xk+1) → 0 as k → ∞. Therefore,

by the sufficient decrease inequality (13.7), it follows that min
{
S(xk), S

2(xk)
LfΩ2

}
→ 0

as k → ∞, implying that S(xk) → 0 as k → ∞.
(c) By the sufficient decrease inequality (13.7), for all n ≥ 0,

F (xn)− F (xn+1) ≥ 1

2
min

{
S(xn),

S2(xn)

LfΩ2

}
. (13.12)
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13.2. The Generalized Conditional Gradient Method 385

Summing the above inequality over n = 0, 1, . . . , k,

F (x0)− F (xk+1) ≥ 1

2

k∑
n=0

min

{
S(xn),

S2(xn)

LfΩ2

}
. (13.13)

Using the facts that F (xk+1) ≥ Fopt and

k∑
n=0

min

{
S(xn),

S2(xn)

LfΩ2

}
≥ (k + 1) min

n=0,1,...,k

[
min

{
S(xn),

S2(xn)

LfΩ2

}]
,

we obtain that

min
n=0,1,...,k

[
min

{
S(xn),

S2(xn)

LfΩ2

}]
≤ 2(F (x0)− Fopt)

k + 1
,

which implies in particular that there exists an n ∈ {0, 1, . . . , k} for which

min

{
S(xn),

S2(xn)

LfΩ2

}
≤ 2(F (x0)− Fopt)

k + 1
,

that is,

S(xn) ≤ max

{
2(F (x0)− Fopt)

k + 1
,

√
2LfΩ2(F (x0)− Fopt)√

k + 1

}
.

Since there exists n ∈ {0, 1, . . . , k} for which the above inequality holds, the result
(13.11) immediately follows.

(d) Suppose that x̄ is a limit point of {xk}k≥0. Then there exists a subsequence
{xkj}j≥0 that converges to x̄. By the definition of the conditional gradient norm
S(·), it follows that for any v ∈ E,

S(xkj ) ≥ 〈∇f(xkj ),xkj − v〉 + g(xkj )− g(v).

Passing to the limit j → ∞ and using the fact that S(xkj ) → 0 as j → ∞, as well
as the continuity of ∇f and the lower semicontinuity of g, we obtain that

0 ≥ 〈∇f(x̄), x̄− v〉 + g(x̄)− g(v) for any v ∈ E,

which is the same as the relation −∇f(x̄) ∈ ∂g(x̄), that is, the same as stationar-
ity.

Example 13.10 (optimization over the unit ball). Consider the problem

min{f(x) : ‖x‖ ≤ 1}, (13.14)

where f : E → R is Lf -smooth. Problem (13.14) fits the general model (13.2) with
g = δB‖·‖[0,1]. Obviously, in this case the generalized conditional gradient method
amounts to the conditional gradient method with feasible set C = B‖·‖[0, 1]. Take
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386 Chapter 13. The Generalized Conditional Gradient Method

x ∈ B‖·‖[0, 1]. In order to find an expression for the conditional gradient norm
S(x), we first note that

p(x) ∈ argminp:‖p‖≤1〈p,∇f(x)〉

is given by p(x) = − ∇f(x)
‖∇f(x)‖ if ∇f(x) 
= 0 and can be chosen as p(x) = 0 if

∇f(x) = 0. Thus, in both cases, we obtain that for any x ∈ B‖·‖[0, 1],

S(x) = 〈∇f(x),x − p(x)〉 = 〈∇f(x),x〉 + ‖∇f(x)‖. (13.15)

By its definition, S(x) = ∞ for any x /∈ B‖·‖[0, 1]. By Theorem 13.6 the above
expression (13.15) is nonnegative and is equal to zero if and only if x is a stationary
point of (13.14), which in this case means that either ∇f(x) = 0 or ∇f(x) = λx
for some λ ≤ 0 (see [10, Example 9.6]).

Assuming that S(xk) 
= 0, the general update formula of the conditional
gradient method for solving (13.14) is

xk+1 = (1− tk)x
k − tk

∇f(xk)
‖∇f(xk)‖ ,

where tk ∈ [0, 1] is an appropriately chosen stepsize. By Theorem 13.9 if the stepsize
is chosen by either an adaptive or exact line search strategies, convergence of S(xk)
to zero is guaranteed.

Example 13.11 (the power method).71 Continuing Example 13.10, let us con-
sider the problem

max
x∈Rn

{
1

2
xTAx : ‖x‖2 ≤ 1

}
, (13.16)

where A ∈ Sn+. Problem (13.16) fits the model (13.14) with f : Rn → R given
by f(x) = − 1

2x
TAx. Consider the conditional gradient method for solving (13.16)

and assume that xk is not a stationary point of problem (13.2). Then

xk+1 = (1− tk)x
k + tk

Axk

‖Axk‖2︸ ︷︷ ︸
pk

. (13.17)

If the stepsizes are chosen by an exact line search strategy, then

tk ∈ argmint∈[0,1]f(x
k + t(pk − xk)). (13.18)

Since f is concave, it follows that either 0 or 1 is an optimal solution of (13.18), and
by the fact that xk is not a stationary point of problem (13.2), we can conclude by
Theorem 13.9(a) that tk 
= 0. We can thus choose tk = 1, and the method (13.17)
becomes

xk+1 =
Axk

‖Axk‖2
,

which is the well-known power method for finding the eigenvector ofA corresponding
to the maximal eigenvalue. Theorem 13.9 guarantees that limit points of the method
are stationary points of problem (13.16), meaning eigenvectors A corresponding to
nonnegative eigenvalues.

71The interpretation of the power method as the conditional gradient method was described in
the work of Luss and Teboulle [85].
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13.2. The Generalized Conditional Gradient Method 387

13.2.4 Convergence Analysis in the Convex Case

We will now further assume that f is convex. In this case, obviously all station-
ary points of problem (13.2) are also optimal points (Theorem 3.72(b)), so that
Theorem 13.9 guarantees that all limit points of the sequence generated by the
generalized conditional gradient method with either adaptive or exact line search
stepsize strategies are optimal points. We also showed in Theorem 13.9 an O(1/

√
k)

rate of convergence of the conditional gradient norm. Our objectives will be to show
an O(1/k) rate of convergence of function values to the optimal value, as well as of
the conditional gradient norm to zero.

We begin by showing that when f is convex, the conditional gradient norm is
lower bounded by the distance to optimality in terms of function values.

Lemma 13.12. Suppose that Assumption 13.1 holds and that f is convex. Then
for any x ∈ dom(g),

S(x) ≥ F (x)− Fopt.

Proof. Let x∗ ∈ X∗. Then for any x ∈ dom(g),

S(x) = 〈∇f(x),x − p(x)〉+ g(x)− g(p(x)) [definition of S]

= 〈∇f(x),x〉 + g(x)− (〈∇f(x),p(x)〉 + g(p(x)))

≥ 〈∇f(x),x〉 + g(x)− (〈∇f(x),x∗〉+ g(x∗)) [definition of p(·) (13.3)]

= 〈∇f(x),x − x∗〉+ g(x)− g(x∗)

≥ f(x)− f(x∗) + g(x)− g(x∗) [convexity of f ]

= F (x)− Fopt.

The convergence analysis relies on the following technical lemma on sequences
of scalars.

Lemma 13.13.72 Let p be a positive integer, and let {ak}k≥0 and {bk}k≥0 be non-
negative sequences satisfying for any k ≥ 0

ak+1 ≤ ak − γkbk +
A

2
γ2k, (13.19)

where γk = 2
k+2p and A is a positive number. Suppose that ak ≤ bk for all k. Then

(a) ak ≤ 2max{A,(p−1)a0}
k+2p−2 for any k ≥ 1;

(b) for any k ≥ 3,

min
n=�k/2�+2,...,k

bn ≤ 8max{A, (p− 1)a0}
k − 2

.

72Lemma 13.13 is an extension of Lemma 4.4 from Bach [4].
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388 Chapter 13. The Generalized Conditional Gradient Method

Proof. (a) By (13.19) and the fact that ak ≤ bk, it follows that

ak+1 ≤ (1− γk)ak +
A

2
γ2k.

Therefore,

a1 ≤ (1− γ0)a0 +
A

2
γ20 ,

a2 ≤ (1− γ1)a1 +
A

2
γ21 = (1− γ1)(1 − γ0)a0 +

A

2
(1− γ1)γ

2
0 +

A

2
γ21 ,

a3 ≤ (1− γ2)a2 +
A

2
γ22 = (1− γ2)(1 − γ1)(1 − γ0)a0

+
A

2

[
(1− γ2)(1 − γ1)γ

2
0 + (1− γ2)γ

2
1 + γ22

]
.

In general,73

ak ≤ a0

k−1∏
s=0

(1− γs) +
A

2

k−1∑
u=0

[
k−1∏
s=u+1

(1− γs)

]
γ2u. (13.20)

Since γk = 2
k+2p , it follows that

A

2

k−1∑
u=0

[
k−1∏
s=u+1

(1− γs)γ
2
u

]
=
A

2

k−1∑
u=0

[
k−1∏
s=u+1

s+ 2p− 2

s+ 2p
γ2u

]

=
A

2

k−1∑
u=0

(u+ 2p− 1)(u+ 2p)

(k + 2p− 2)(k + 2p− 1)
· 4

(u+ 2p)2

=
A

2

k−1∑
u=0

u+ 2p− 1

(k + 2p− 2)(k + 2p− 1)
· 4

u+ 2p

≤ 2Ak

(k + 2p− 2)(k + 2p− 1)
. (13.21)

In addition,

a0

k−1∏
s=0

(1− γs) = a0

k−1∏
s=0

s+ 2p− 2

s+ 2p
= a0

(2p− 2)(2p− 1)

(k + 2p− 2)(k + 2p− 1)
. (13.22)

Therefore, combining (13.20), (13.21), and (13.22),

ak ≤ 2Ak

(k + 2p− 2)(k + 2p− 1)
+

a0(2p− 2)(2p− 1)

(k + 2p− 2)(k + 2p− 1)

≤ 2max{A, (p− 1)a0}(k + 2p− 1)

(k + 2p− 2)(k + 2p− 1)

=
2max{A, (p− 1)a0}

k + 2p− 2
.

73We use the convention that Πu
k=�ck = 1 whenever 	 > u.
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13.2. The Generalized Conditional Gradient Method 389

(b) Replacing the index k with n in (13.19), we have

an+1 ≤ an − γnbn +
A

2
γ2n.

Summing the above inequality over n = j, j + 1, . . . , k, we obtain that

ak+1 ≤ aj −
k∑
n=j

γnbn +
A

2

k∑
n=j

γ2n.

Thus, using the result of part (a) (assuming that j ≥ 1),

⎛⎝ k∑
n=j

γn

⎞⎠ min
n=j,...,k

bn ≤ aj +
A

2

k∑
n=j

γ2n

≤ 2max{A, (p− 1)a0}
j + 2p− 2

+ 2A

k∑
n=j

1

(n+ 2p)2

≤ 2max{A, (p− 1)a0}
j + 2p− 2

+ 2A

k∑
n=j

1

(n+ 2p− 1)(n+ 2p)

=
2max{A, (p− 1)a0}

j + 2p− 2
+ 2A

k∑
n=j

[
1

n+ 2p− 1
− 1

n+ 2p

]

=
2max{A, (p− 1)a0}

j + 2p− 2
+ 2A

[
1

j + 2p− 1
− 1

k + 2p

]
≤ 4max{A, (p− 1)a0}

j + 2p− 2
. (13.23)

On the other hand,

k∑
n=j

γn = 2

k∑
n=j

1

n+ 2p
≥ 2

k − j + 1

k + 2p
,

which, combined with (13.23), yields

min
n=j,...,k

bn ≤ 2max{A, (p− 1)a0}(k + 2p)

(j + 2p− 2)(k − j + 1)
.

Taking j =  k/2!+ 2, we conclude that for any k ≥ 3,

min
n=�k/2�+2,...,k

bn ≤ 2max{A, (p− 1)a0}(k + 2p)

( k/2!+ 2p)(k −  k/2! − 1)
. (13.24)
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390 Chapter 13. The Generalized Conditional Gradient Method

Now,

k + 2p

( k/2!+ 2p)(k −  k/2! − 1)
≤ k + 2p

(k/2 + 2p− 0.5)(k −  k/2! − 1)

= 2
k + 2p

k + 4p− 1
· 1

k −  k/2! − 1

≤ 2

k −  k/2! − 1

≤ 2

k/2− 1
,

which, combined with (13.24), yields

min
n=�k/2�+2,...,k

bn ≤ 8max{A, (p− 1)a0}
k − 2

.

Equipped with Lemma 13.13, we will now establish a sublinear rate of con-
vergence of the generalized conditional gradient method under the three stepsize
strategies described at the beginning of Section 13.2.3: predefined, adaptive, and
exact line search.

Theorem 13.14. Suppose that Assumption 13.1 holds and that f is convex. Let
{xk}k≥0 be the sequence generated by the generalized conditional gradient method
for solving problem (13.2) with either a predefined stepsize tk = αk ≡ 2

k+2 , adaptive
stepsize, or exact line search. Let Ω be an upper bound on the diameter of dom(g):

Ω ≥ max
x,y∈dom(g)

‖x− y‖.

Then

(a) F (xk)− Fopt ≤ 2LfΩ
2

k for any k ≥ 1;

(b) minn=�k/2�+2,...,k S(x
n) ≤ 8LfΩ

2

k−2 for any k ≥ 3.

Proof. By the fundamental inequality (13.6) invoked with x = xk and t = tk, it
follows that for any k ≥ 0,

F (xk + tk(p
k − xk))− Fopt ≤ F (xk)− Fopt − tkS(x

k) +
t2kLf
2

‖pk − xk‖2, (13.25)

where pk = p(xk). Specifically, if a predefined stepsize is used, meaning that
tk = αk ≡ 2

k+2 , then

F (xk+αk(p
k−xk))−Fopt ≤ F (xk)−Fopt−αkS(x

k)+
α2
kLf
2

‖pk−xk‖2. (13.26)

If an exact line search is used, meaning that tk = uk ∈ argmint∈[0,1]F (x
k + t(pk −

xk)), then

F (xk + uk(p
k − xk))− Fopt ≤ F (xk + αk(p

k − xk))− Fopt (13.27)

≤ F (xk)− Fopt − αkS(x
k) +

α2
kLf
2

‖pk − xk‖2,
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13.3. The Strongly Convex Case 391

where the first inequality follows by the definition of uk and the second is the inequal-

ity (13.26). Finally, in the adaptive stepsize strategy, tk = vk ≡ min
{
1, S(xk)

Lf‖pk−xk‖2

}
.

Note that vk satisfies

vk = argmint∈[0,1]

{
−tS(xk) + t2Lf

2
‖pk − xk‖2

}
. (13.28)

Thus,

F (xk + vk(p
k − xk))− Fopt ≤ F (xk)− Fopt − vkS(x

k) +
v2kLf
2

‖pk − xk‖2

≤ F (xk)− Fopt − αkS(x
k) +

α2
kLf
2

‖pk − xk‖2,

where the first inequality is the inequality (13.25) with tk = vk and the second is
due to (13.28). Combining the last inequality with (13.26) and (13.27), we conclude
that for the three stepsize strategies, the following inequality holds:

F (xk+1)− Fopt ≤ F (xk)− Fopt − αkS(x
k) +

α2
kLf
2

‖pk − xk‖2,

which, combined with the inequality ‖pk − xk‖ ≤ Ω, implies that

F (xk+1)− Fopt ≤ F (xk)− Fopt − αkS(x
k) +

α2
kLfΩ

2

2
.

Invoking Lemma 13.13 with ak = F (xk)− Fopt, bk = S(xk), A = LfΩ
2, and p = 1

and noting that ak ≤ bk by Lemma 13.12, both parts (a) and (b) follow.

13.3 The Strongly Convex Case
We will focus on the case where the nonsmooth part is an indicator of a compact
and convex set C, meaning that g = δC , so that problem (13.2) becomes

min{f(x) : x ∈ C},

and the method under consideration is the conditional gradient method. In Sec-
tion 10.6 we showed that the proximal gradient method enjoys an improved linear
convergence when the smooth part (in the composite model) is strongly convex.
Unfortunately, as we will see in Section 13.3.1, in general, the conditional gradient
method does not converge in a linear rate even if an additional strong convexity
assumption is made on the objective function. Later on, in Section 13.3.2 we will
show how, under a strong convexity assumption on the feasible set (and not on the
objective function), linear rate can be established.

13.3.1 The Negative Result of Canon and Cullum

The arguments go back to Canon and Cullum [37], and we follow them. We begin
with some technical lemmas.

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



392 Chapter 13. The Generalized Conditional Gradient Method

Lemma 13.15. Let {an}n≥0 be a sequence of real numbers such that
∑∞

n=0 |an|
diverges. Then for every ε > 0,

∑∞
n=k a

2
n ≥ 1

k1+ε for infinitely many k’s.

Proof. Suppose by contradiction that there is ε > 0 and a positive integer K such
that for all k ≥ K

∞∑
n=k

a2n <
1

k1+2ε
. (13.29)

We will show that
∑∞

n=1 |an| converges. Note that by the Cauchy–Schwarz inequal-
ity,

∞∑
n=1

|an| =
∞∑
n=1

|an|n(1+ε)/2n−(1+ε)/2 ≤

√√√√ ∞∑
n=1

n1+εa2n

√√√√ ∞∑
n=1

n−(1+ε). (13.30)

Since
∑∞

n=1 n
−(1+ε) converges, it is enough to show that

∑∞
n=1 n

1+εa2n converges.
For that, note that by (13.29), for any m ≥ K,

m∑
k=K

[
kε

m∑
n=k

a2n

]
≤

m∑
k=K

[
kε
∞∑
n=k

a2n

]
≤

m∑
k=K

1

k1+ε
. (13.31)

On the other hand,

m∑
k=K

[
kε

m∑
n=k

a2n

]
=

m∑
n=K

[
a2n

n∑
k=K

kε

]
,

which, combined with the inequality

n∑
k=K

kε ≥
∫ n

K

xεdx =
1

1 + ε
(n1+ε −K1+ε)

and (13.31), implies that (taking m → ∞)

1

1 + ε

∞∑
n=K

(n1+ε −K1+ε)a2n ≤
∞∑
k=K

1

k1+ε
.

Since both
∑∞

k=K
1

k1+ε and
∑∞
n=K a

2
n converge, it follows that

∑∞
n=K n

1+εa2n con-
verges and hence, by (13.30), that

∑∞
n=1 |an| converges, which is a contradiction to

our underlying assumptions.

We will also use the following well-known lemma.

Lemma 13.16 (see [75, Chapter VII, Theorem 4]). Let {bn}n≥0 be a sequence
satisfying 0 ≤ bn < 1 for any n. Then

∏m
n=0(1 − bn) → 0 as m → ∞ if and only if∑∞

n=0 bn diverges.

Our main goal will be to describe an example of a minimization problem
of a strongly convex function over a nonempty compact convex set for which the
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13.3. The Strongly Convex Case 393

conditional gradient method does not exhibit a linear rate of convergence. For that,
let us consider the following quadratic problem over Rn:

fopt ≡ min
x∈Rn

{
fq(x) ≡

1

2
xTQx+ bTx : x ∈ Ω

}
, (13.32)

where Q ∈ Sn++,b ∈ Rn, and Ω = conv{a1, a2, . . . , al}, where a1, a2, . . . , al ∈ Rn.
We will make the following assumption on problem (13.32).

Assumption 13.17. int(Ω) 
= ∅ and the optimal solution of problem (13.32),
denoted by x∗, is on the boundary of Ω and is not an extreme point of Ω.

Denoting A ∈ Rn×l as the matrix whose columns are a1, . . . , al, we can also
write problem (13.32) as

min
x∈Rn,v∈Rl

{
1

2
xTQx+ bTx : x = Av,v ∈ Δl

}
.

The conditional gradient method with exact line search strategy for solving (13.32)
reads as follows. Given the kth iterate xk, the next point xk+1 is computed as
follows:

• Choose
ik ∈ argmini=1,2,...,l〈ai,∇fq(xk)〉.

• Define
dk = aik − xk. (13.33)

If 〈dk,∇fq(xk)〉 ≥ 0, then xk is the optimal solution of problem (13.32).
Otherwise, set

xk+1 = xk + tkd
k,

where
tk = argmint∈[0,1]fq(x

k + tdk) = min {λk, 1} ,
with λk defined as

λk = −〈dk,∇fq(xk)〉
(dk)TQdk

. (13.34)

We will make the following assumption on the starting point of the conditional
gradient method.

Assumption 13.18. fq(x
0) < mini=1,2,...,l fq(ai) and x0 = Av0 ∈ Ω, where

v0 ∈ Δl ∩Rn++. In particular, x0 ∈ int(Ω).

A vector x0 satisfying Assumption 13.18 can be easily obtained by the follow-
ing procedure.

• Pick p ∈ argmini=1,2,...,lfq(ai).

• Employ one step of the conditional gradient method starting from ap and
obtain a point x̃0 ∈ Ω for which fq(x̃

0) < fq(a
p) (the latter is satisfied since

ap is not an optimal solution—see Theorem 13.9(a)).
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394 Chapter 13. The Generalized Conditional Gradient Method

• Find ṽ0 ∈ Δl for which x̃0 = Aṽ0.

• If ṽ0 ∈ Rl++, define v0 = ṽ0 and x0 = x̃0. If ṽ0 /∈ Rl++, then take a
point v0 ∈ Δl ∩ Rl++ close enough to ṽ0 such that x0 ≡ Av0 will satisfy
fq(x

0) < fq(a
p).

The following lemma gathers several technical results that will be key to establishing
the slow rate of the conditional gradient method.

Lemma 13.19. Suppose that Assumption 13.17 holds and that {xk} is the sequence
generated by the conditional gradient method with exact line search employed on
problem (13.32) with a starting point x0 satisfying Assumption 13.18. Let dk and
λk be given by (13.33) and (13.34), respectively. Then

(a) xk ∈ int(Ω) and tk = λk < 1 for any k ≥ 0;

(b) fq(x
k+1) = fq(x

k)− 1
2 ((d

k)TQdk)λ2k for any k ≥ 0;

(c)
∑∞
k=0 λk = ∞;

(d) there exists β > 0 such that (dk)TQdk ≥ β for all k ≥ 0.

Proof. (a) The stepsizes must satisfy tk = λk < 1, since otherwise, if tk = 1 for
some k, then this means that xk+1 = aik . But fq(x

k+1) = fq(aik) > fq(x
0), which

is a contradiction to the monotonicity of the sequence of function values generated
by the conditional gradient method (Theorem 13.9(a)). The proof that xk ∈ int(Ω)
is by induction on k. For k = 0, by Assumption 13.18, x0 ∈ int(Ω). Now suppose
that xk ∈ int(Ω). To prove that the same holds for k+ 1, note that since tk < 1, it
follows by the line segment principle (Lemma 5.23) that xk+1 = (1− tk)x

k + tkaik
is also in int(Ω).

(b) Since tk = λk, it follows that

fq(x
k+1) = fq

(
xk + λkd

k
)

=
1

2
(xk + λkd

k)TQ(xk + λkd
k) + bT (xk + λkd

k)

= fq(x
k) + λk(d

k)T (Qxk + b) +
λ2k
2
(dk)TQdk

= fq(x
k) + ((dk)TQdk)

(
−λ2k +

λ2k
2

)
= fq(x

k)− 1

2
((dk)TQdk)λ2k.

(c) Suppose by contradiction that
∑∞
k=0 λk < ∞, then by Lemma 13.16, it

follows that
∏∞
k=0(1 − λk) = δ for some δ > 0. Note that by the definition of the

method, for any k ≥ 0, xk = Avk, where {vk}k≥0 satisfies

vk+1 = (1− λk)v
k + λkeik .
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13.3. The Strongly Convex Case 395

Hence,
vk+1 ≥ (1 − λk)v

k,

implying that
vk ≥ δv0. (13.35)

By Theorem 13.9(d), the limit points of {xk}k≥0 are stationary points of problem
(13.32). Let x∗ be the unique optimal solution of problem (13.32). Since x∗ is
the only stationary point of problem (13.32), we can conclude that xk → x∗. The
sequence {vk}k≥0 is bounded and hence has a convergent subsequence {vkj}j≥0.
Denoting the limit of the subsequence by v∗ ∈ Δl, we note that by (13.35) it follows
that v∗ ≥ δv0, and hence v∗ ∈ Δl∩Rl++. Taking j to ∞ in the identity xkj = Avkj ,
we obtain that x∗ = Av∗, where v∗ ∈ Δl ∩Rl++, implying that the x∗ ∈ int(Ω), in
contradiction to Assumption 13.17.

(d) Since
(dk)TQdk ≥ γ‖dk‖22 (13.36)

with γ = λmin(Q) > 0, it follows that we need to show that ‖dk‖2 is bounded below
by a positive number. Note that by Assumption 13.17, x∗ /∈ {a1, a2, . . . , al}, and
therefore there exists a positive integer K and β1 > 0 such that ‖ai − xk‖ ≥ β1 for
all k > K and i ∈ {1, 2, . . . , l}. Since xk ∈ int(Ω) for all k, it follows that for β2
defined as

β2 ≡ min{β1, ‖ai0 − x0‖2, ‖ai1 − x1‖2, . . . , ‖aiK − xK‖2} > 0,

it holds that ‖dk‖2 = ‖aik − xk‖ ≥ β2 for all k ≥ 0, and we can finally conclude by
(13.36) that for β = γβ2

2 , (d
k)TQdk ≥ β for all k ≥ 0.

The main negative result showing that the rate of convergence of the method
cannot be linear is stated in Theorem 13.20 below.

Theorem 13.20 (Canon and Cullum’s negative result). Suppose that As-
sumption 13.17 holds and that {xk} is the sequence generated by the conditional
gradient method with exact line search for solving problem (13.32) with a start-
ing point x0 satisfying Assumption 13.18. Then for every ε > 0 we have that
fq(x

k)− fopt ≥ 1
k1+ε for infinitely many k’s.

Proof. Let dk and λk be given by (13.33) and (13.34), respectively. By Lemma
13.19(b), we have for any two positive integers satisfying K ≥ k,

fq(x
K)− fopt = fq(x

k)− fopt −
1

2

K−1∑
n=k

((dn)TQdn)λ2n.

Taking K → ∞ and using the fact that fq(x
K) → fopt and Lemma 13.19(d), we

obtain that

fq(x
k)− fopt =

1

2

∞∑
n=k

((dn)Q(dn))λ2n ≥ β

2

∞∑
n=k

λ2n. (13.37)

By Lemma 13.19(c),
∑∞
k=0 λk = ∞, and hence by Lemma 13.15 and (13.37), we

conclude that fq(x
k)− fopt ≥ 1

k1+ε for infinitely many k’s.
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396 Chapter 13. The Generalized Conditional Gradient Method

Example 13.21. Consider the problem

min{fq(x1, x2) ≡ x21 + x22 : (x1, x2) ∈ conv{(−1, 0), (1, 0), (0, 1)}}. (13.38)

Assumption 13.17 is satisfied since the feasible set of problem (13.38) has a nonempty
interior and the optimal solution, (x∗1, x

∗
2) = (0, 0), is on the boundary of the feasible

set but is not an extreme point. The starting point x0 = (0, 12 ) satisfies Assumption
13.18 since

fq(x
0) =

1

4
< 1 = min{fq(−1, 0), fq(1, 0), fq(0, 1)}

and x0 = 1
4 (−1, 0) + 1

4 (1, 0) +
1
2 (0, 1). The first 100 iterations produced by the

conditional gradient method are plotted in Figure 13.1.

8 6 4 2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13.1. First 100 iterations of the conditional gradient method em-
ployed on the problem from Example 13.21.

13.3.2 Linear Rate under Strong Convexity of the Feasible Set

Canon and Cullum’s negative result shows that different assumptions than strong
convexity of the objective are required in order to establish a linear rate of conver-
gence of the conditional gradient method. One example of such an assumption is
strong convexity of the feasible set.

Definition 13.22 (strongly convex set). A nonempty set C ⊆ E is called σ-
strongly convex (σ > 0) if for any x,y ∈ C and λ ∈ [0, 1] the inclusion

B
[
λx+ (1− λ)y,

σ

2
λ(1 − λ)‖x− y‖2

]
⊆ C

holds.

A set is called strongly convex if it is σ-strongly convex for some σ > 0.
Obviously, any strongly convex set is also convex. The next result states that level
sets of nonnegative strongly convex and smooth functions are strongly convex sets.
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13.3. The Strongly Convex Case 397

Theorem 13.23 (strong convexity of level sets of strongly convex and
smooth functions).74 Suppose that g : E → R+ is nonnegative, Lg-smooth, and
σg-strongly convex. Let α > 0. Then the set

Cα = {x ∈ E : g(x) ≤ α}

is
σg√
2αLg

-strongly convex.

Proof. Let x,y ∈ Cα and λ ∈ [0, 1]. Define xλ = λx + (1 − λ)y. By the
nonnegativity of g and the sufficient decrease lemma (Lemma 10.4), we have

g(xλ) ≥ g(xλ)− g

(
xλ − 1

Lg
∇g(xλ)

)
≥ 1

2Lg
‖∇g(xλ)‖2.

Thus,

‖∇g(xλ)‖ ≤
√
2Lgg(xλ). (13.39)

By the σg-strong convexity of g and the inequalities g(x), g(y) ≤ α,

g(xλ) ≤ λg(x) + (1 − λ)g(y) − σg
2
λ(1− λ)‖x − y‖2 ≤ α− β, (13.40)

where β ≡ σg

2 λ(1 − λ)‖x− y‖2.
Denote σ̃ =

σg√
2αLg

. In order to show that Cα is σ̃-strongly convex, we will

take u ∈ B[0, 1] and show that xλ + γu ∈ Cα, where γ = σ̃
2λ(1 − λ)‖x − y‖2.

Indeed,

g(xλ + γu) ≤ g(xλ) + γ〈∇g(xλ),u〉+
γ2Lg
2

‖u‖2 [descent lemma]

≤ g(xλ) + γ‖∇g(xλ)‖ · ‖u‖+ γ2Lg
2

‖u‖2 [Cauchy–Schwarz]

≤ g(xλ) + γ
√
2Lgg(xλ)‖u‖+

γ2Lg
2

‖u‖2 [(13.39)]

=

(√
g(xλ) + γ

√
Lg
2

‖u‖
)2

,

which, combined with (13.40) and the fact that ‖u‖ ≤ 1, implies that

g(xλ + γu) ≤
(√

α− β + γ

√
Lg
2

)2

. (13.41)

74Theorem 13.23 is from Journée, Nesterov, Richtárik, and Sepulchre, [74, Theorem 12].
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398 Chapter 13. The Generalized Conditional Gradient Method

By the concavity of the square root function ϕ(t) =
√
t, we have

√
α− β = ϕ(α − β) ≤ ϕ(α) − ϕ′(α)β =

√
α− β

2
√
α

=
√
α− σgλ(1 − λ)‖x− y‖2

4
√
α

=
√
α−

√
2αLgσ̃λ(1 − λ)‖x− y‖2

4
√
α

=
√
α−

√
Lg
2

σ̃λ(1 − λ)‖x− y‖2
2

=
√
α− γ

√
Lg
2
,

which, along with (13.41), leads to the inequality g(xλ + γu) ≤ α.

Example 13.24 (strong convexity of Euclidean balls). Consider the set75

C = B[c, r] ⊆ E, where c ∈ E and r > 0. Note that C = Lev(g, r2), where
g(x) = ‖x − c‖2. Since here Lg = σg = 2, α = r2, it follows that the strong
convexity parameter of the set is 2√

2·2·r2 = 1
r .

We will consider the problem

min
x∈C

f(x), (13.42)

where we assume the following set of properties.

Assumption 13.25.

(A) C is nonempty, compact, and σ-strongly convex.

(B) f : E → (−∞,∞] is convex Lf -smooth over dom(f), which is assumed to be
an open and convex set satisfying C ⊆ dom(f).

(C) There exists δ > 0 such that ‖∇f(x)‖ ≥ δ for any x ∈ C.

(D) The optimal set of problem (13.42) is nonempty and denoted by X∗. The
optimal value of the problem is denoted by fopt.

As usual, for any x ∈ C, we use the notation

p(x) ∈ argminp∈C〈∇f(x),p〉, S(x) = 〈∇f(x),x− p(x)〉.

We begin by establishing the following result connecting S(x) and the distance
between x and p(x).

75Recall that in this chapter the underlying norm is assumed to be Euclidean.
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13.3. The Strongly Convex Case 399

Lemma 13.26. Suppose that Assumption 13.25 holds. Then for any x ∈ C,

S(x) ≥ σδ

4
‖x− p(x)‖2. (13.43)

Proof. Let x ∈ C. Define

z =
x+ p(x)

2
− σ

8

∇f(x)
‖∇f(x)‖‖x− p(x)‖2.

Then obviously z ∈ B
[x+p(x)

2 , σ8 ‖x−p(x)‖2
]
, and hence, by the σ-strong convexity

of C, z ∈ C. In particular,

〈∇f(x), z〉 ≥ 〈∇f(x),p(x)〉. (13.44)

The result (13.43) follows by the following arguments:

〈∇f(x),x − p(x)〉 = 2

〈
∇f(x), x+ p(x)

2
− p(x)

〉
= 2〈∇f(x), z− p(x)〉 + 2

〈
∇f(x), σ

8

∇f(x)
‖∇f(x)‖‖x− p(x)‖2

〉
(13.44)

≥ 2

〈
∇f(x), σ

8

∇f(x)
‖∇f(x)‖‖x− p(x)‖2

〉
=

σ

4
‖∇f(x)‖ · ‖x− p(x)‖2

≥ σδ

4
‖x− p(x)‖2.

We will now establish the main result of this section stating that under As-
sumption 13.25, the conditional gradient method with either an adaptive or exact
line search stepsize strategies enjoys a linear rate of convergence in function values.

Theorem 13.27. Suppose that Assumption 13.25 holds, and let {xk}k≥0 be the
sequence generated by the conditional gradient method for solving problem (13.42)
with stepsizes chosen by either the adaptive or exact line search strategies. Then
for any k ≥ 0,

(a) f(xk+1)− fopt ≤ (1− λ)(f(xk)− fopt), where

λ = min

{
σδ

8Lf
,
1

2

}
; (13.45)

(b) f(xk)− fopt ≤ (1− λ)k(f(x0)− fopt).

Proof. Let k ≥ 0 and let x̃k = xk + sk(p
k − xk), where pk = p(xk) and sk is the

stepsize chosen by the adaptive strategy:

sk = min

{
1,

S(xk)

Lf‖xk − pk‖2

}
.
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400 Chapter 13. The Generalized Conditional Gradient Method

By Lemma 13.7 (invoked with x = xk and t = sk),

f(xk)− f(x̃k) ≥ skS(x
k)− s2kLf

2
‖pk − xk‖2. (13.46)

There are two options: Either sk = 1, and in this case S(xk) ≥ Lf‖xk − pk‖2, and
thus

f(xk)− f(x̃k) ≥ S(xk)− Lf
2

‖pk − xk‖2 ≥ 1

2
S(xk), (13.47)

or, on the other hand, sk = S(xk)
Lf‖xk−pk‖2 , and then (13.46) amounts to

f(xk)− f(x̃k) ≥ S2(xk)

2Lf‖xk − pk‖2 ,

which, combined with (13.43) (with x = xk), implies the inequality

f(xk)− f(x̃k) ≥ σδ

8Lf
S(xk). (13.48)

Combining the inequalities (13.47) and (13.48) arising from the two possible cases,
we obtain that

f(xk)− f(x̃k) ≥ λS(xk),

where λ is given in (13.45). If the method is employed with an adaptive stepsize
strategy, then x̃k = xk+1, and hence f(x̃k) = f(xk+1). If the method is employed
with an exact line search strategy, then f(xk+1) ≤ f(x̃k). Therefore, in both
stepsize regimes, we get

f(xk)− f(xk+1) ≥ f(xk)− f(x̃k) ≥ λS(xk). (13.49)

On the other hand, by Lemma 13.12,

f(xk)− fopt ≤ S(xk). (13.50)

Combining (13.49) and (13.50), we obtain that

λ(f(xk)− fopt) ≤ (f(xk)− fopt)− (f(xk+1)− fopt),

from which it readily follows that

f(xk+1)− fopt ≤ (1− λ)(f(xk)− fopt).

Part (b) is an immediate consequence of (a).

13.4 The Randomized Generalized Block Conditional
Gradient Method

76

In this section we will consider a block version of the generalized conditional gradient
method. The model and underlying assumptions are similar to those made w.r.t.

76The randomized generalized block conditional gradient method presented in Section 13.4 is a
simple generalization of the randomized block conditional gradient method introduced and ana-
lyzed by Lacoste-Julien, Jaggi, Schmidt, and Pletscher in [76].

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



13.4. The Randomized Generalized Block Conditional Gradient Method 401

the block proximal gradient method in Section 11.2. We will consider the problem

min
x1∈E1,x2∈E2,...,xp∈Ep

⎧⎨⎩F (x1,x2, . . . ,xp) ≡ f(x1,x2, . . . ,xp) +

p∑
j=1

gj(xj)

⎫⎬⎭ ,

(13.51)
where E1,E2, . . . ,Ep are Euclidean spaces. We will denote the product space by
E = E1 × E2 × · · · × Ep and use our convention (see Section 1.9) that the product
space is also Euclidean with endowed norm

‖(u1,u2, . . . ,up)‖E =

√√√√ p∑
i=1

‖ui‖2Ei
.

We will omit the subscripts of the norms indicating the underlying vector space
(whose identity will be clear from the context). The function g : E → (−∞,∞] is
defined by

g(x1,x2, . . . ,xp) ≡
p∑
i=1

gi(xi),

and in particular dom(g) = dom(g1)×dom(g2)×· · ·×dom(gp). The gradient w.r.t.
the ith block (i ∈ {1, 2, . . . , p}) is denoted by ∇if and is actually a mapping from
dom(f) to Ei. The following is satisfied:

∇f(x) = (∇1f(x),∇2f(x), . . . ,∇pf(x)).

For any i ∈ {1, 2, . . . , p} we define Ui : Ei → E to be the linear transformation given
by

Ui(d) = (0, . . . ,0, d︸︷︷︸
ith block

,0, . . . ,0), d ∈ Ei.

We also use throughout this chapter the notation that a vector x ∈ E can be written
as

x = (x1,x2, . . . ,xp),

and this relation will also be written as x = (xi)
p
i=1. Thus, in our notation, the

main model (13.51) can be simply written as

min
x∈E

{F (x) = f(x) + g(x)}.

The basic assumptions on the model are summarized below.

Assumption 13.28.

(A) gi : Ei → (−∞,∞] is proper closed and convex with compact dom(gi) for any
i ∈ {1, 2, . . . , p}.

(B) f : E → (−∞,∞] is convex and differentiable over dom(f), which is assumed
to be an open and convex set satisfying dom(g) ⊆ dom(f).
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402 Chapter 13. The Generalized Conditional Gradient Method

(C) There exist L1, L2, . . . , Lp > 0 such that for any i ∈ {1, 2, . . . , p} it holds that

‖∇if(x)− ∇if(x+ Ui(d))‖ ≤ Li‖d‖

for all x ∈ dom(f) and d ∈ Ei for which x+ Ui(d) ∈ dom(f).

(D) The optimal set of problem (13.51) is nonempty and denoted by X∗. The
optimal value is denoted by Fopt.

For any i ∈ {1, 2, . . . , p}, we denote

pi(x) ∈ argminv∈Ei
{〈v,∇if(x)〉+ gi(v)} (13.52)

and define the ith partial conditional gradient norm as

Si(x) = max
v∈Ei

{〈∇if(x),xi−v〉+gi(xi)−gi(v)} = 〈∇if(x),xi−pi(x)〉+gi(xi)−gi(pi(x)).

Obviously, we have

S(x) =

p∑
i=1

Si(x).

There might be multiple optimal solutions for problem (13.52) and also for problem
(13.3) defining p(x). Our only assumption is that p(x) is chosen as

p(x) = (p1(x),p2(x), . . . ,pp(x)). (13.53)

The latter is not a restricting assumption since the vector in the right-hand side of
(13.53) is indeed a minimizer of problem (13.3). The randomized generalized block
conditional gradient method is described below.

The Randomized Generalized Block Conditional Gradient (RGBCG)
Method

Initialization: pick x0 = (x0
1,x

0
2, . . . ,x

0
p) ∈ dom(g).

General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) pick ik ∈ {1, 2, . . . , p} randomly via a uniform distribution and tk ∈ [0, 1];

(b) set xk+1 = xk + tkUik(pik(xk)− xkik ).

In our analysis the following notation is used:

• ξk−1 ≡ {i0, i1, . . . , ik−1} is a multivariate random variable.

• We will consider, in addition to the underlying Euclidean norm of the space
E, the following weighted norm:

‖x‖L ≡

√√√√ p∑
i=1

Li‖xi‖2.
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13.4. The Randomized Generalized Block Conditional Gradient Method 403

The rate of convergence of the RGBCG method with a specific choice of diminishing
stepsizes is established in the following result.

Theorem 13.29. Suppose that Assumption 13.28 holds, and let {xk}k≥0 be the
sequence generated by the RGBCG method for solving problem (13.51) with stepsizes
tk = 2p

k+2p . Let Ω satisfy

Ω ≥ max
x,y∈dom(g)

‖x− y‖L. (13.54)

Then

(a) for any k ≥ 1,

Eξk−1
(F (xk))− Fopt ≤ 2max{(p− 1)(F (x0)− Fopt), pΩ

2}
k + 2p− 2

; (13.55)

(b) for any k ≥ 3,

min
n=�k/2�+2,...,k

Eξn−1(S(x
n)) ≤ 8max{(p− 1)(F (x0)− Fopt), pΩ

2}
k − 2

. (13.56)

Proof. We will use the shorthand notation pk = p(xk), and by the relation (13.53)
it follows that pki = pi(x

k). Using the block descent lemma (Lemma 11.8) and the
convexity of gik , we can write the following:

F (xk+1) = f(xk+1) + g(xk+1)

= f(xk + tkUik(pkik − xkik)) + g(xk + tkUik(pkik − xkik))

≤ f(xk)− tk〈∇ikf(x
k),xkik − pkik〉+

t2kLik
2

‖pkik − xkik‖
2 +

p∑
j=1,j =ik

gj(x
k)

+gik((1− tk)x
k
ik
+ tkp

k
ik
)

= f(xk)− tk〈∇ikf(x
k),xkik − pkik〉+

t2kLik
2

‖pkik − xkik‖
2 + g(xk)

−gik(xkik) + gik((1− tk)x
k
ik
+ tkp

k
ik
)

≤ f(xk)− tk〈∇ikf(x
k),xkik − pkik〉+

t2kLik
2

‖pkik − xkik‖
2 + g(xk)

−gik(xkik) + (1− tk)gik(x
k
ik ) + tkgik(p

k
ik)

= F (xk)− tkSik(x
k) +

t2kLik
2

‖pkik − xkik‖
2.

Taking expectation w.r.t. the random variable ik, we obtain

Eik(F (x
k+1)) ≤ F (xk)− tk

p

p∑
i=1

Si(x
k) +

t2k
2p

p∑
i=1

Li‖pki − xki ‖2

= F (xk)− tk
p
S(xk) +

t2k
2p

‖pk − xk‖2L.
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404 Chapter 13. The Generalized Conditional Gradient Method

Taking expectation w.r.t. ξk−1 and using the bound (13.54) results with the follow-
ing inequality:

Eξk(F (x
k+1)) ≤ Eξk−1

(F (xk))− tk
p
Eξk−1

(S(xk)) +
t2k
2p

Ω2.

Defining αk = tk
p = 2

k+2p and subtracting Fopt from both sides, we obtain

Eξk(F (x
k+1))− Fopt ≤ Eξk−1

(F (xk))− Fopt − αkEξk−1
(S(xk)) +

pα2
k

2
Ω2.

Invoking Lemma 13.13 with ak = Eξk−1
(F (xk)) − Fopt, bk = Eξk−1

(S(xk)), and
A = pΩ2, noting that by Lemma 13.12 ak ≤ bk, the inequalities (13.55) and (13.56)
follow.
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Chapter 14

Alternating Minimization

Underlying Spaces: In this chapter, all the underlying spaces are Euclidean.

14.1 The Method
Consider the problem

min
x1∈E1,x2∈E2,...,xp∈Ep

F (x1,x2, . . . ,xp), (14.1)

where E1,E2, . . . ,Ep are Euclidean spaces whose product space is denoted by E =
E1 ×E2 × · · · ×Ep. We use our convention (see Section 1.9) that the product space
is also Euclidean with endowed norm

‖(u1,u2, . . . ,up)‖E =

√√√√ p∑
i=1

‖ui‖2Ei
.

We will omit the subscripts of the norms indicating the underlying vector space
whose identity will be clear from the context. At this point we only assume that
F : E → (−∞,∞] is proper, but obviously to assure some kind of convergence,
additional assumptions will be imposed.

For any i ∈ {1, 2, . . . , p} we define Ui : Ei → E to be the linear transformation
given by

Ui(d) = (0, . . . ,0, d︸︷︷︸
ith block

,0, . . . ,0), d ∈ Ei.

We also use throughout this chapter the notation that a vector x ∈ E can be written
as

x = (x1,x2, . . . ,xp),

and this relation will also be written as x = (xi)
p
i=1.

In this chapter we consider the alternating minimization method in which we
successively pick a block in a cyclic manner and set the new value of the chosen
block to be a minimizer of the objective w.r.t. the chosen block. The kth iterate is
denoted by xk = (xk1 ,x

k
2 , . . . ,x

k
p). Each iteration of the alternating minimization

405
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406 Chapter 14. Alternating Minimization

method involves p “subiterations” and the by-products of these sub-iterations will
be denoted by the following auxiliary subsequences:

xk,0 = xk = (xk1 ,x
k
2 , . . . ,x

k
p),

xk,1 = (xk+1
1 ,xk2 , . . . ,x

k
p),

xk,2 = (xk+1
1 ,xk+1

2 ,xk3 , . . . ,x
k
p),

...

xk,p = xk+1 = (xk+1
1 ,xk+1

2 , . . . ,xk+1
p ).

(14.2)

The alternating minimization method for minimizing F is described below.

The Alternating Minimization Method

Initialization: pick x0 = (x0
1,x

0
2, . . . ,x

0
p) ∈ dom(F ).

General step: for any k = 0, 1, 2, . . . execute the following step:

• for i = 1, 2, . . . , p, compute

xk+1
i ∈ argminxi∈Ei

F (xk+1
1 , . . . ,xk+1

i−1 ,xi,x
k
i+1, . . . ,x

k
p). (14.3)

In our notation, we can alternatively rewrite the general step of the alternating
minimization method as follows:

• set xk,0 = xk;

• for i = 1, 2, . . . , p, compute xk,i = xk,i−1 + Ui(ỹ − xki ), where

ỹ ∈ argminy∈Ei
F (xk,i−1 + Ui(y − xki )); (14.4)

• set xk+1 = xk,p.

The following simple lemma states that if F is proper and closed and has bounded
level sets, then problem (14.1) has a minimizer and the alternating minimization
method is well defined in the sense that the minimization problems (14.3) (or in their
alternative form (14.4)) possess minimizers. In the sequel, we will impose additional
assumptions on the structure of F that will enable us to establish convergence
results.

Lemma 14.1 (alternating minimization is well defined). Suppose that F :
E → (−∞,∞] (E = E1 × E2 × · · · × Ep) is a proper and closed function. Assume
further that F has bounded level sets; that is, Lev(F, α) = {x ∈ E : F (x) ≤ α} is
bounded for any α ∈ R. Then the function F has at least one minimizer, and for
any x̄ ∈ dom(F ) and i ∈ {1, 2, . . . , p} the problem

min
y∈Ei

F (x̄+ Ui(y − x̄i)) (14.5)

possesses a minimizer.
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14.2. Coordinate-wise Minima 407

Proof. Take x̃ ∈ dom(F ). Then

argminx∈EF (x) = argminx∈E{F (x) : x ∈ Lev(F, F (x̃))}.

Since F is closed with bounded level sets, it follows that Lev(F, F (x̃)) is compact.
Hence, by the Weierstrass theorem for closed functions (Theorem 2.12), it follows
that the problem of minimizing the proper and closed function F over Lev(F, F (x̃)),
and hence also the problem of minimizing F over the entire space, possesses a
minimizer. Since the function y �→ F (x̄ + Ui(y − x̄i)) is proper and closed with
bounded level sets, the same argument shows that problem (14.5) also possesses a
minimizer.

14.2 Coordinate-wise Minima

By the definition of the method, it is clear that convergence will most likely be
proved (if at all possible) to coordinate-wise minimum points.

Definition 14.2. A vector x∗ ∈ E is a coordinate-wise minimum of a function
F : E1 × E2 × · · · × Ep → (−∞,∞] if x∗ ∈ dom(F ) and

F (x∗) ≤ F (x∗ + Ui(y)) for all i = 1, 2, . . . , p,y ∈ Ei.

The next theorem is a rather standard result showing that under properness
and closedness of the objective function, as well as an assumption on the uniqueness
of the minimizers of the class of subproblems solved at each iteration, the limit points
of the sequence generated by the alternating minimization method are coordinate-
wise minima.

Theorem 14.3 (convergence of alternating minimization to coordinate-
wise minima).77 Suppose that F : E → (−∞,∞] (E = E1 × E2 × · · · × Ep) is a
proper closed function that is continuous over its domain. Assume that

(A) for each x̄ ∈ dom(F ) and i ∈ {1, 2, . . . , p} the problem miny∈Ei F (x̄+ Ui(y −
x̄i)) has a unique minimizer;

(B) the level sets of F are bounded, meaning that for any α ∈ R, the set Lev(F, α) =
{x ∈ E : F (x) ≤ α} is bounded.

Let {xk}k≥0 be the sequence generated by the alternating minimization method for
minimizing F . Then {xk}k≥0 is bounded, and any limit point of the sequence is a
coordinate-wise minimum.

Proof. To prove that the sequence is bounded, note that by the definition of
the method, the sequence of function values {F (xk)}k≥0 is nonincreasing, which
in particular implies that {xk}k≥0 ⊆ Lev(F, F (x0)); therefore, by condition (B), it
follows that the sequence {xk}k≥0 is bounded, which along with the closedness of F

77Theorem 14.3 and its proof originate from Bertsekas [28, Proposition 2.7.1].
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408 Chapter 14. Alternating Minimization

implies that {F (xk)}k≥0 is bounded below. We can thus conclude that {F (xk)}k≥0
converges to some real number F̄ . Since F (xk) ≥ F (xk,1) ≥ F (xk+1), it follows
that {F (xk,1)}k≥0 also converges to F̄ , meaning that the sequences {F (xk)}k≥0
and {F (xk,1)}k≥0 converge to the same value.

Now, suppose that x̄ is a limit point of {xk}k≥0. Then there exists a subse-
quence {xkj}j≥0 converging to x̄. Since the sequence {xkj ,1}j≥0 is bounded (follows
directly from the boundedness of {xk}k≥0), by potentially passing to a subsequence,
we can assume that {xkj ,1}j≥0 converges to some vector (v, x̄2, . . . , x̄p) (v ∈ E1).
By definition of the method,

F (x
kj+1
1 ,x

kj
2 , . . . ,x

kj
p ) ≤ F (x1,x

kj
2 , . . . ,x

kj
p ) for any x1 ∈ E1.

Taking the limit j → ∞ and using the closedness of F , as well as the continuity of
F over its domain, we obtain that

F (v, x̄2, . . . , x̄p) ≤ F (x1, x̄2, . . . , x̄p) for any x1 ∈ E1.

Since {F (xk)}k≥0 and {F (xk,1)}k≥0 converge to the same value, we have

F (v, x̄2, . . . , x̄p) = F (x̄1, x̄2, . . . , x̄p),

which by the uniqueness of the minimizer w.r.t. the first block (condition (A))
implies that v = x̄1. Therefore,

F (x̄1, x̄2, . . . , x̄p) ≤ F (x1, x̄2, . . . , x̄p) for any x1 ∈ E1,

which is the first condition for coordinate-wise minimality. We have shown that
xkj ,1 → x̄ as j → ∞. This means that we can repeat the arguments when xkj ,1

replaces xkj and concentrate on the second coordinate to obtain that

F (x̄1, x̄2, . . . , x̄p) ≤ F (x̄1,x2, x̄3, . . . , x̄p) for any x2 ∈ E2,

which is the second condition for coordinate-wise minimality. The above argument
can be repeated until we show that x̄ satisfies all the conditions for coordinate-wise
minimality.

The following famous example of Powell describes a situation in which the
alternating minimization method produces a sequence whose limit points are not
coordinate-wise minima points.

Example 14.4 (Powell’s example—failure of alternating minimization I).78

Let

ϕ(x, y, z) = −xy−yz−zx+[x−1]2++[−x−1]2++[y−1]2++[−y−1]2++[z−1]2++[−z−1]2+.

Note that ϕ is differentiable. Fixing y and z, it is easy to show that

argminxϕ(x, y, z) =

⎧⎪⎨⎪⎩ sgn(y + z)(1 + 1
2 |y + z|), y + z 
= 0,

[−1, 1], y + z = 0,
(14.6)

78Powell’s example is from [106].
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14.2. Coordinate-wise Minima 409

and similarly (by the symmetry of ϕ),

argminyϕ(x, y, z) =

⎧⎪⎨⎪⎩ sgn(x+ z)(1 + 1
2 |x+ z|), x+ z 
= 0,

[−1, 1], x+ z = 0,
(14.7)

argminzϕ(x, y, z) =

⎧⎪⎨⎪⎩ sgn(x+ y)(1 + 1
2 |x+ y|), x+ y 
= 0,

[−1, 1], x+ y = 0.
(14.8)

Suppose that ε > 0 and that we initialize the alternating minimization method with
the point

(
−1− ε, 1 + 1

2ε,−1− 1
4ε
)
. Then the first six iterations are(

1 +
1

8
ε, 1 +

1

2
ε,−1− 1

4
ε

)
,(

1 +
1

8
ε,−1− 1

16
ε,−1− 1

4
ε

)
,(

1 +
1

8
ε,−1− 1

16
ε, 1 +

1

32
ε

)
,(

−1− 1

64
ε,−1− 1

16
ε, 1 +

1

32
ε

)
,(

−1− 1

64
ε, 1 +

1

128
ε, 1 +

1

32
ε

)
,(

−1− 1

64
ε, 1 +

1

128
ε,−1− 1

256
ε

)
.

We are essentially back to the first point, but with 1
64ε replacing ε. The process

continues by cycling around the six points

(1, 1,−1), (1,−1,−1), (1,−1, 1), (−1,−1, 1), (−1, 1, 1), (−1, 1,−1).

None of these points is a stationary point of ϕ. Indeed,

∇ϕ(1, 1,−1) = (0, 0,−2), ∇ϕ(−1, 1, 1) = (−2, 0, 0), ∇ϕ(1,−1, 1) = (0,−2, 0),

∇ϕ(−1,−1, 1) = (0, 0, 2), ∇ϕ(1,−1,−1) = (2, 0, 0), ∇ϕ(−1, 1,−1) = (0, 2, 0).

Since the limit points are not stationary points of ϕ, they are also not coordinate-
wise minima79 points. The fact that the limit points of the sequence generated
by the alternating minimization method are not coordinate-wise minima is not a
contradiction to Theorem 14.3 since two assumptions are not met: the subproblems
solved at each iteration do not necessarily possess unique minimizers, and the level
sets of ϕ are not bounded since for any x > 1

ϕ(x, x, x) = −3x2 + 3(x− 1)2 = −6x+ 3

79For example, to show that (1, 1,−1) is not a coordinate-wise minimum, note that since
∇ϕ(1, 1,−1) = (0, 0,−2), then (1, 1,−1 + δ) for small enough δ > 0 will have a smaller func-
tion value than (1, 1,−1).
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410 Chapter 14. Alternating Minimization

goes to −∞ as x → ∞. A close inspection of the proof of Theorem 14.3 reveals that
the assumption on the boundedness of the level sets in Theorem 14.3 is only required
in order to assure the boundedness of the sequence generated by the method. Since
the sequence in this example is in any case bounded, it follows that the failure to
converge to a coordinate-wise minimum is actually due to the nonuniqueness of the
optimal solutions of the subproblems (14.6),(14.7) and (14.8).

Note that if the alternating minimization method reaches a coordinate-wise
minimum, then it might get stuck there since the point is optimal w.r.t. each block.80

The natural question is of course whether coordinate-wise minima are necessarily
stationary points of the problem, meaning that they satisfy the most basic opti-
mality condition of the problem. The answer is unfortunately no even when the
objective function is convex, as the following example illustrates.

Example 14.5 (failure of alternating minimization II). Consider the convex
function

F (x1, x2) = |3x1 + 4x2|+ |x1 − 2x2|.

The function satisfies all the assumptions of Theorem 14.3: it is proper, closed, and
continuous with bounded level sets and has a unique minimizer w.r.t. each variable.
Therefore, Theorem 14.3 guarantees that the limit point points of the alternating
minimization method are coordinate-wise minima points. We will see that for the
specific problem under consideration, this result is of very little importance.

The unique minimizer of the function is (x1, x2) = (0, 0). However, for any
α ∈ R the point (−4α, 3α) is a coordinate-wise minimum of f . To show this, assume
first that α > 0. Note that

F (−4α, t) = |4t− 12α|+ |2t+ 4α| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−6t+ 8α, t < −2α,

−2t+ 16α, −2α ≤ t ≤ 3α,

6t− 8α, t > 3α,

and obviously t = 3α is the minimizer of F (−4α, t). Similarly, the optimal solution
of

F (t, 3α) = |3t+ 12α|+ |t− 6α| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−4t− 6α, t < −4α,

2t+ 18α, −4α ≤ t ≤ 6α,

4t+ 6α, t > 6α,

is t = −4α. A similar argument also shows that (−4α, 3α) is a coordinate-wise
minimum also for α < 0. We conclude that (−4α, 3α) is a coordinate-wise minimum
for any α ∈ R where only the value α = 0 corresponds to the actual minimum of
F ; all other values correspond to nonoptimal/nonstationary81 points of F . The
severity of the situation is made clear when noting that after only one iteration

80Actually, the only situation in which the method might move away from a coordinate-wise
minimum is if there are multiple optimal solutions to some of the subproblems solved at each
subiteration of the method.

81In the sense that 0 /∈ ∂F (x).
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14.3. The Composite Model 411

5 5 5 0 0.5 1

5

0

0.5

1

1.5

2

Figure 14.1. Contour lines of the function f(x1, x2) = |3x1 +4x2|+ |x1 −
2x2|. All the points on the emphasized line {(−4α, 3α) : α ∈ R} are coordinate-wise
minima, and only (0, 0) is a global minimum.

of alternating minimization, the method gets stuck at a coordinate-wise minimum,
which, unless the initial vector contains at least one zero element, is a nonoptimal
point (easy to show). The contour lines of F , as well as the line comprising the
continuum of coordinate-wise minima points is described in Figure 14.1.

Example 14.5 shows that even if convexity is assumed, coordinate-wise minima
points are not necessarily stationary points of the objective function; in particular,
this means that the alternating minimization method will not be guaranteed to
converge to stationary points (which are global minima points in the convex case).
One possible reason for this phenomena is that the stationarity condition 0 ∈ ∂F (x)
does not decompose into separate conditions on each block. This is why, in the next
section, we present a specific model for the function F for which we will be able to
prove that coordinate-wise minima points are necessarily stationary points.

14.3 The Composite Model
The model that we will analyze from now on is the composite model, which was
discussed in Sections 11.2 and 13.4 in the contexts of the block proximal gradient
and block conditional gradient methods. Thus, our main model is

min
x1∈E1,x2∈E2,...,xp∈Ep

⎧⎨⎩F (x1,x2, . . . ,xp) = f(x1,x2, . . . ,xp) +

p∑
j=1

gj(xj)

⎫⎬⎭ . (14.9)

The function g : E → (−∞,∞] is defined by

g(x1,x2, . . . ,xp) ≡
p∑
i=1

gi(xi).
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412 Chapter 14. Alternating Minimization

The gradient w.r.t. the ith block (i ∈ {1, 2, . . . , p}) is denoted by ∇if , and the
following is satisfied:

∇f(x) = (∇1f(x),∇2f(x), . . . ,∇pf(x)).

Note that in our notation the main model (14.9) can be simply written as

min
x∈E

{F (x) = f(x) + g(x)}.

The basic assumptions on the model are summarized below.

Assumption 14.6.

(A) gi : Ei → (−∞,∞] is proper closed and convex for any i ∈ {1, 2, . . . , p}. In
addition, gi is continuous over its domain.

(B) f : E → (−∞,∞] is a closed function; dom(f) is convex; f is differentiable
over int(dom(f)) and dom(g) ⊆ int(dom(f)).

Under the above structure of the function F , the general step of the alternating
minimization method (14.3) can be compactly written as

xk+1
i ∈ argminxi∈Ei

{f(xk+1
1 , . . . ,xk+1

i−1 ,xi,x
k
i+1, . . . ,x

k
p) + gi(xi)},

where we omitted from the above the constant terms related to the functions gj ,
j 
= i.

Recall that a point x∗ ∈ dom(g) is a stationary point of problem (14.9) if
it satisfies −∇f(x∗) ∈ ∂g(x∗) (Definition 3.73) and that by Theorem 11.6(a), this
condition can be written equivalently as −∇if(x

∗) ∈ ∂gi(x
∗), i = 1, 2, . . . , p. The

latter fact will enable us to show that coordinate-wise minima points of F are
stationary points of problem (14.9).

Lemma 14.7 (coordinate-wise minimality ⇒ stationarity). Suppose that
Assumption 14.6 holds and that x∗ ∈ dom(g) is a coordinate-wise minimum of
F = f + g. Then x∗ is a stationary point of problem (14.9).

Proof. Since x∗ is a coordinate-wise minimum of F , it follows that for all i ∈
{1, 2, . . . , p},

x∗i ∈ argminy∈Ei
{f̃i(y) + gi(y)},

where
f̃i(y) ≡ f(x∗ + Ui(y − x∗i )) = f(x∗1, . . . ,x

∗
i−1,y,x

∗
i+1, . . . ,x

∗
p).

Therefore, by Theorem 3.72(a), −∇f̃i(x∗i ) ∈ ∂gi(x
∗). Since ∇f̃i(x∗i ) = ∇if(x

∗), we
conclude that for any i, −∇if(x

∗) ∈ ∂gi(x
∗). Thus, invoking Theorem 11.6(a), we

obtain that −∇f(x∗) ∈ ∂g(x∗), namely, that x∗ is a stationary point of problem
(14.9).

Recall that Theorem 14.3 showed under appropriate assumptions that limit
points of the sequence generated by the alternating minimization method are co-
ordinate-wise minima points. Combining this result with Lemma 14.7 we obtain
the following corollary.

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



14.4. Convergence in the Convex Case 413

Corollary 14.8. Suppose that Assumption 14.6 holds, and assume further that
F = f + g satisfies the following:

• for each x̄ ∈ dom(F ) and i ∈ {1, 2, . . . , p} the problem miny∈Ei F (x̄+ Ui(y −
x̄i)) has a unique minimizer;

• the level sets of F are bounded, meaning that for any α ∈ R, the set {x ∈ E :
F (x) ≤ α} is bounded.

Let {xk}k≥0 be the sequence generated by the alternating minimization method for
solving (14.9). Then {xk}k≥0 is bounded, and any limit point of the sequence is a
stationary point of problem (14.9).

14.4 Convergence in the Convex Case
The convergence results previously established require a rather strong assumption
on the uniqueness of the optimal solution to the class of subproblems that are solved
at each sub-iteration of the alternating minimization method. We will show how
this assumption can be removed if we assume convexity of the objective function.

Theorem 14.9.82 Suppose that Assumption 14.6 holds and that in addition

• f is convex;

• f is continuously differentiable83 over int(dom(f));

• the function F = f + g satisfies that the level sets of F are bounded, meaning
that for any α ∈ R, the set Lev(F, α) = {x ∈ E : F (x) ≤ α} is bounded.

Then the sequence generated by the alternating minimization method for solving
problem (14.9) is bounded, and any limit point of the sequence is an optimal solution
of the problem.

Proof. Let {xk}k≥0 be the sequence generated by the alternating minimization
method, and let {xk,i}k≥0 (i = 0, 1, . . . , p) be the auxiliary sequences given in
(14.2). We begin by showing that {xk}k≥0 is bounded. Indeed, by the definition of
the method, the sequence of function values is nonincreasing, and hence {xk}k≥0 ⊆
Lev(F, F (x0)). Since Lev(F, F (x0)) is bounded by the premise of the theorem, it
follows that {xk}k≥0 is bounded.

Let x̄ ∈ dom(g) be a limit point of {xk}k≥0. We will show that x̄ is an optimal
solution of problem (14.9). Since x̄ is a limit point of the sequence, there exists a
subsequence {xkj}j≥0 for which xkj → x̄. By potentially passing to a subsequence,
the sequences {xkj ,i}j≥0 (i = 1, 2, . . . , p) can also be assumed to be convergent and
xkj ,i → x̄i ∈ dom(g) as j → ∞ for all i ∈ {0, 1, 2, . . . , p}. Obviously, the following
three properties hold:

• [P1] x̄ = x̄0.

82Theorem 14.9 is an extension of Proposition 6 from Grippo and Sciandrone [61] to the com-
posite model.

83“Continuously differentiable” means that the gradient is a continuous mapping.
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414 Chapter 14. Alternating Minimization

• [P2] for any i, x̄i is different from x̄i−1 only at the ith block (if at all different).

• [P3] F (x̄) = F (x̄i) for all i ∈ {0, 1, 2, . . . , p} (easily shown by taking the
limit j → ∞ in the inequality F (xkj ) ≥ F (xkj ,i) ≥ F (xkj+1) and using the
closedness F , as well as the continuity of F over its domain).

By the definition of the sequence we have for all j ≥ 0 and i ∈ {1, 2, . . . , p},

x
kj ,i
i ∈ argminxi∈Ei

F (x
kj+1
1 , . . . ,x

kj+1
i−1 ,xi,x

kj
i+1, . . . ,x

kj
p ).

Therefore, since x
kj ,i
i is a stationary point of the above minimization problem (see

Theorem 3.72(a)),

−∇if(x
kj ,i) ∈ ∂gi(x

kj ,i
i ).

Taking the limit84 j → ∞ and using the continuity of ∇f , we obtain that

− ∇if(x̄
i) ∈ ∂gi(x̄

i
i). (14.10)

Note that for any xi+1 ∈ dom(gi+1),

F (xkj ,i+1) ≤ F (x
kj+1
1 , . . . ,x

kj+1
i ,xi+1,x

kj
i+2, . . . ,x

kj
p ).

Taking the limit j → ∞ and using [P3], we conclude that for any xi+1 ∈ dom(gi+1),

F (x̄i) = F (x̄i+1) ≤ F (x̄i1, . . . , x̄
i
i,xi+1, x̄

i
i+2, . . . , x̄

i
p),

from which we obtain, using Theorem 3.72(a) again, that for any i ∈ {0, 1, . . . , p−1},

− ∇i+1f(x̄
i) ∈ ∂gi+1(x̄

i
i+1). (14.11)

We need to show that the following implication holds for any i ∈ {2, 3, . . . , p}, l ∈
{1, 2, . . . , p− 1} such that l < i:

− ∇if(x̄
l) ∈ ∂gi(x̄

l
i) ⇒ −∇if(x̄

l−1) ∈ ∂gi(x̄
l−1
i ). (14.12)

To prove the above implication, assume that −∇if(x̄
l) ∈ ∂gi(x̄

l
i) and let η ∈ Ei.

Then

〈∇f(x̄l), x̄l−1 + Ui(η)− x̄l〉 (∗)
= 〈∇lf(x̄

l), x̄l−1l − x̄ll〉+ 〈∇if(x̄
l),η〉

(∗∗)
≥ gl(x̄

l
l)− gl(x̄

l−1
l ) + 〈∇if(x̄

l),η〉
(∗∗∗)
= gl(x̄

l
l)− gl(x̄

l−1
l ) + 〈∇if(x̄

l), (x̄l−1i + η)− x̄li〉
(∗∗∗∗)
≥ gl(x̄

l
l)− gl(x̄

l−1
l ) + gi(x̄

l
i)− gi(x̄

l−1
i + η)

= g(x̄l)− g(x̄l−1 + Ui(η)), (14.13)

84We use here the following simple result: if h : V → (−∞,∞] is proper closed and convex
and ak ∈ ∂h(bk) for all k and ak → ā,bk → b̄, then ā ∈ ∂h(b̄). To prove the result, take an
arbitrary z ∈ V. Then since ak ∈ ∂h(bk), it follows that h(z) ≥ h(bk) + 〈ak, z − bk〉. Taking
the liminf of both sides and using the closedness (hence lower semicontinuity) of h, we obtain that
h(z) ≥ h(b̄) + 〈ā, z− b̄〉, showing that ā ∈ ∂h(b̄).
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14.5. Rate of Convergence in the Convex Case 415

where (∗) follows by [P2], (∗∗) is a consequence of the relation (14.10) with i = l,
(∗∗∗) follows by the fact that for any l < i, x̄li = x̄l−1i , and (∗∗∗∗) is due to our
underlying assumption that −∇if(x̄

l) ∈ ∂gi(x̄
l
i). Using inequality (14.13) and the

gradient inequality on the function f (utilizing its convexity), we obtain

F (x̄l−1 + Ui(η)) = f(x̄l−1 + Ui(η)) + g(x̄l−1 + Ui(η))
≥ f(x̄l) + 〈∇f(x̄l), x̄l−1 + Ui(η)− x̄l〉+ g(x̄l−1 + Ui(η))
≥ F (x̄l)

[P3]
= F (x̄l−1).

We thus obtain that

x̄l−1i ∈ argminxi∈Ei
F (x̄l−11 , . . . , x̄l−1i−1,xi, x̄

l−1
i+1, . . . , x̄

l−1
p ),

which implies that −∇if(x̄
l−1) ∈ ∂gi(x̄

l−1
i ), establishing the implication (14.12).

We are now ready to prove that x̄ = x̄0 is an optimal solution of problem (14.9).
For that, we will show that for any m ∈ {1, 2, . . . , p} it holds that

− ∇mf(x̄) ∈ ∂gm(x̄m). (14.14)

By Theorem 11.6 these relations are equivalent to stationarity of x̄, and using
Theorem 3.72(b) and the convexity of f , we can deduce that x̄ is an optimal solution
of problem (14.9). For m = 1 the relation (14.14) follows by substituting i = 0 in
(14.11) and using the fact that x̄ = x̄0 (property [P1]). Let m > 1. Then by (14.11)
we have that −∇mf(x̄

m−1) ∈ ∂gm(x̄
m−1
m ). We can now utilize the implication

(14.12) several times and obtain

−∇mf(x̄m−1) ∈ ∂gm(x̄m−1
m )

⇓
−∇mf(x̄m−2) ∈ ∂gm(x̄m−2

m )

⇓
...

⇓
−∇mf(x̄0) ∈ ∂gm(x̄0

m),

and thus, since x̄ = x̄0 (property [P1]), we conclude that −∇mf(x̄) ∈ ∂gm(x̄m) for
any m, implying that x̄ is an optimal solution of problem (14.9).

14.5 Rate of Convergence in the Convex Case
In this section we will prove some rates of convergence results of the alternating
minimization method in the convex setting. We begin by showing a general result
that holds for any number of blocks, and we will then establish an improved result
for the case p = 2.
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416 Chapter 14. Alternating Minimization

14.5.1 General p

We will consider the model (14.9) that was studied in the previous two sections.
The basic assumptions on the model are gathered in the following.

Assumption 14.10.

(A) gi : Ei → (−∞,∞] is proper closed and convex for any i ∈ {1, 2, . . . , p}.

(B) f : E → R is convex and Lf -smooth.

(C) For any α > 0, there exists Rα > 0 such that

max
x,x∗∈E

{‖x− x∗‖ : F (x) ≤ α,x∗ ∈ X∗} ≤ Rα.

(D) The optimal set of problem (14.9) is nonempty and denoted by X∗. The opti-
mal value is denoted by Fopt.

85

Theorem 14.11 (O(1/k) rate of convergence of alternating minimiza-
tion).86 Suppose that Assumption 14.10 holds, and let {xk}k≥0 be the sequence gen-
erated by the alternating minimization method for solving problem (14.9). Then for
all k ≥ 2,

F (xk)− Fopt ≤ max

{(
1

2

)(k−1)/2
(F (x0)− Fopt),

8Lfp
2R2

k − 1

}
, (14.15)

where R = RF (x0).

Proof. Let x∗ ∈ X∗. Since the sequence of function values {F (xk)}k≥0 generated
by the method is nonincreasing, it follows that {xk}k≥0 ⊆ Lev(F, F (x0)), and hence,
by Assumption 14.10(C),

‖xk+1 − x∗‖ ≤ R, (14.16)

where R = RF (x0). Let {xk,j}k≥0 (j = 0, 1, . . . , p) be the auxiliary sequences given
in (14.2). Then for any k ≥ 0 and j ∈ {0, 1, 2, . . . , p− 1},

F (xk,j)− F (xk,j+1)

= f(xk,j)− f(xk,j+1) + g(xk,j)− g(xk,j+1)

≥ 〈∇f(xk,j+1),xk,j − xk,j+1〉+ 1

2Lf
‖∇f(xk,j)− ∇f(xk,j+1)‖2 + g(xk,j)− g(xk,j+1)

= 〈∇j+1f(x
k,j+1),xkj+1 − xk+1

j+1 〉+
1

2Lf
‖∇f(xk,j)− ∇f(xk,j+1)‖2

+gj+1(x
k
j+1)− gj+1(x

k+1
j+1 ), (14.17)

where the inequality follows by the convexity and Lf -smoothness of f along with
Theorem 5.8 (equivalence between (i) and (iii)). Since

xk+1
j+1 ∈ argminxj+1

F (xk+1
1 , . . . ,xk+1

j ,xj+1,x
k
j+2, . . . ,x

k
p),

85Property (D) actually follows from properties (A), (B), and (C); see Lemma 14.1.
86The proof of Theorem 14.11 follows the proof of Theorem 3.1 from the work of Hong, Wang,

Razaviyayn, and Luo [69].
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14.5. Rate of Convergence in the Convex Case 417

it follows that
− ∇j+1f(x

k,j+1) ∈ ∂gj+1(x
k+1
j+1 ), (14.18)

and hence, by the subgradient inequality,

gj+1(x
k
j+1) ≥ gj+1(x

k+1
j+1 )− 〈∇j+1f(x

k,j+1),xkj+1 − xk+1
j+1 〉,

which, combined with (14.17), yields

F (xk,j)− F (xk,j+1) ≥ 1

2Lf
‖∇f(xk,j)− ∇f(xk,j+1)‖2.

Summing the above inequality over j = 0, 1, . . . , p− 1, we obtain that

F (xk)− F (xk+1) ≥ 1

2Lf

p−1∑
j=0

‖∇f(xk,j)− ∇f(xk,j+1)‖2. (14.19)

On the other hand, for any k ≥ 0,

F (xk+1)− F (x∗) = f(xk+1)− f(x∗) + g(xk+1)− g(x∗)

≤ 〈∇f(xk+1),xk+1 − x∗〉+ g(xk+1)− g(x∗)

=

p−1∑
j=0

[
〈∇j+1f(x

k+1),xk+1
j+1 − x∗j+1〉+ (gj+1(x

k+1
j+1 )− gj+1(x

∗
j+1))

]
=

p−1∑
j=0

[
〈∇j+1f(x

k,j+1),xk+1
j+1 − x∗j+1〉+ (gj+1(x

k+1
j+1 )− gj+1(x

∗
j+1))

]
+

p−1∑
j=0

〈∇j+1f(x
k+1)− ∇j+1f(x

k,j+1),xk+1
j+1 − x∗j+1〉

≤
p−1∑
j=0

〈∇j+1f(x
k+1)− ∇j+1f(x

k,j+1),xk+1
j+1 − x∗j+1〉, (14.20)

where the first inequality follows by the gradient inequality employed on the function
f , and the second inequality follows by the relation (14.18). Using the Cauchy–
Schwarz and triangle inequalities, we can continue (14.20) and obtain that

F (xk+1)− F (x∗) ≤
p−1∑
j=0

‖∇j+1f(x
k+1)−∇j+1f(x

k,j+1)‖ · ‖xk+1
j+1 − x∗j+1‖. (14.21)

Note that

‖∇j+1f(x
k+1)− ∇j+1f(x

k,j+1)‖ ≤ ‖∇f(xk+1)− ∇f(xk,j+1)‖

≤
p−1∑
t=j+1

‖∇f(xk,t)− ∇f(xk,t+1)‖

≤
p−1∑
t=0

‖∇f(xk,t)− ∇f(xk,t+1)‖,
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418 Chapter 14. Alternating Minimization

which, combined with (14.21), yields the inequality

F (xk+1)− F (x∗) ≤
(
p−1∑
t=0

‖∇f(xk,t)− ∇f(xk,t+1)‖
)⎛⎝p−1∑

j=0

‖xk+1
j+1 − x∗j+1‖

⎞⎠ .

Taking the square of both sides and using (14.16), we obtain

(F (xk+1)− F (x∗))2 ≤
(
p−1∑
t=0

‖∇f(xk,t)− ∇f(xk,t+1)‖
)2
⎛⎝p−1∑
j=0

‖xk+1
j+1 − x∗j+1‖

⎞⎠2

≤ p2

(
p−1∑
t=0

‖∇f(xk,t)− ∇f(xk,t+1)‖2
)⎛⎝p−1∑

j=0

‖xk+1
j+1 − x∗j+1‖2

⎞⎠
= p2

(
p−1∑
t=0

‖∇f(xk,t)− ∇f(xk,t+1)‖2
)

‖xk+1 − x∗‖2

≤ p2R2

p−1∑
t=0

‖∇f(xk,t)− ∇f(xk,t+1)‖2. (14.22)

We can thus conclude by (14.19) and (14.22) that for any k ≥ 0,

(F (xk+1)− Fopt)
2 ≤ 2Lfp

2R2(F (xk)− F (xk+1)).

Denoting ak = F (xk)− Fopt, the last inequality can be rewritten as

ak − ak+1 ≥ 1

γ
a2k+1,

where γ = 2Lfp
2R2. Invoking Lemma 11.17, we obtain that for all k ≥ 2,

ak ≤ max

{(
1

2

)(k−1)/2
a0,

8Lfp
2R2

k − 1

}
,

which is the desired result (14.15).

14.5.2 p = 2

The dependency of the efficiency estimate (14.15) on the global Lipschitz constant
Lf is problematic since it might be a very large number. We will now develop
a different line of analysis in the case where there are only two blocks (p = 2).
The new analysis will produce an improved efficiency estimate that depends on the
smallest block Lipschitz constant rather than on Lf . The general model (14.9) in
the case p = 2 amounts to

min
x1∈E1,x2∈E2

{F (x1,x2) ≡ f(x1,x2) + g1(x1) + g2(x2)}. (14.23)

As usual, we use the notation x = (x1,x2) and g(x) = g1(x1) + g2(x2). We gather
below the required assumptions.
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14.5. Rate of Convergence in the Convex Case 419

Assumption 14.12.

(A) For i ∈ {1, 2}, the function gi : Ei → (−∞,∞] is proper closed and convex.

(B) f : E → R is convex. In addition, f is differentiable over an open set contain-
ing dom(g).

(C) For any i ∈ {1, 2} the gradient of f is Lipschitz continuous w.r.t. xi over
dom(gi) with constant Li ∈ (0,∞), meaning that

‖∇1f(x1 + d1,x2)− ∇1f(x1,x2)‖ ≤ L1‖d1‖,
‖∇2f(x1,x2 + d2)− ∇2f(x1,x2)‖ ≤ L2‖d2‖

for any x1 ∈ dom(g1),x2 ∈ dom(g2), and d1 ∈ E1,d2 ∈ E2 such that x+d1 ∈
dom(g1),x2 + d2 ∈ dom(g2).

(D) The optimal set of (14.23), denoted by X∗, is nonempty, and the corresponding
optimal value is denoted by Fopt.

(E) For any α > 0, there exists Rα > 0 such that

max
x,x∗∈E

{‖x− x∗‖ : F (x) ≤ α,x∗ ∈ X∗} ≤ Rα.

The alternating minimization method for solving problem (14.23) is described
below.

The Alternating Minimization Method

Initialization: x0
1 ∈ dom(g1),x

0
2 ∈ dom(g2) such that

x0
2 ∈ argminx2∈E2

f(x0
1,x2) + g2(x2).

General step (k = 0, 1, . . .):

xk+1
1 ∈ argminx1∈E1

f(x1,x
k
2) + g1(x1), (14.24)

xk+1
2 ∈ argminx2∈E2

f(xk+1
1 ,x2) + g2(x2). (14.25)

Note that, as opposed to the description of the method so far, we assume
that “half” an iteration was performed prior to the first iteration (that is, x0

2 ∈
argminx2∈E2

f(x0
1,x2)+g2(x2)). We will also utilize the auxiliary sequence {xk,1}k≥0

as defined in (14.2) but use the following simpler notation:

xk+
1
2 = (xk+1

1 ,xk2).

We will adopt the notation used in Section 11.3.1 and consider for any M > 0 the
partial prox-grad mappings

T iM (x) = prox 1
M gi

(
xi −

1

M
∇if(x)

)
, i = 1, 2,
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420 Chapter 14. Alternating Minimization

as well as the partial gradient mappings

GiM (x) =M
(
xi − T iM (x)

)
, i = 1, 2.

Obviously, for any M > 0,

TM (x) = (T 1
M (x), T 2

M (x)), GM (x) = (G1
M (x), G2

M (x)),

and from the definition of the alternating minimization method we have for all
k ≥ 0,

G1
M (xk+

1
2 ) = 0, G2

M (xk) = 0. (14.26)

We begin by proving the following sufficient decrease-type result.

Lemma 14.13. Suppose that Assumption 14.12 holds. Let {xk}k≥0 be the sequence
generated by the alternating minimization method for solving problem (14.23). Then
for any k ≥ 0 the following inequalities hold:

F (xk)− F (xk+
1
2 ) ≥ 1

2L1
‖G1

L1
(xk)‖2, (14.27)

F (xk+
1
2 )− F (xk+1) ≥ 1

2L2
‖G2

L2
(xk+

1
2 )‖2. (14.28)

Proof. Invoking the block sufficient decrease lemma (Lemma 11.9) with x = xk

and i = 1, we obtain

F (xk1 ,x
k
2)− F (T 1

L1
(xk),xk2) ≥

1

2L1
‖G1

L1
(xk1 ,x

k
2)‖2.

The inequality (14.27) now follows from the inequality F (xk+
1
2 ) ≤ F (T 1

L1
(xk)),xk2).

The inequality (14.28) follows by invoking the block sufficient decrease lemma with

x = xk+
1
2 , i = 2, and using the inequality F (xk+1) ≤ F (xk+1

1 , T 2
L2
(xk+

1
2 )).

The next lemma establishes an upper bound on the distance in function values
of the iterates of the method.

Lemma 14.14. Let {xk}k≥0 be the sequence generated by the alternating mini-
mization method for solving problem (14.23). Then for any x∗ ∈ X∗ and k ≥ 0,

F (xk+
1
2 )− F (x∗) ≤ ‖G1

L1
(xk)‖ · ‖xk − x∗‖, (14.29)

F (xk+1)− F (x∗) ≤ ‖G2
L2
(xk+

1
2 )‖ · ‖xk+ 1

2 − x∗‖. (14.30)

Proof. Note that

TL1(x
k) = (T 1

L1
(xk), T 2

L1
(xk)) =

(
T 1
L1
(xk),xk2 − 1

L1
G2
L1
(xk)

)
= (T 1

L1
(xk),xk2),
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14.5. Rate of Convergence in the Convex Case 421

where in the last equality we used (14.26). Combining this with the block descent
lemma (Lemma 11.8), we obtain that

f(TL1(x
k))− f(x∗) ≤ f(xk) + 〈∇1f(x

k), T 1
L1
(xk)− xk1〉

+
L1

2
‖T 1

L1
(xk)− xk1‖2 − f(x∗)

= f(xk) + 〈∇f(xk), TL1(x
k)− xk〉

+
L1

2
‖T 1

L1
(xk)− xk1‖2 − f(x∗). (14.31)

Since f is convex, it follows that f(xk)−f(x∗) ≤ 〈∇f(xk),xk−x∗〉, which, combined
with (14.31), yields

f(TL1(x
k))− f(x∗) ≤ 〈∇f(xk), TL1(x

k)− x∗〉+ L1

2
‖T 1

L1
(xk)− xk1‖2. (14.32)

Since TL1(x
k) = prox 1

L1
g

(
xk − 1

L1
∇f(xk)

)
, then by invoking the second prox the-

orem (Theorem 6.39) with f = 1
L1
g,x = xk − 1

L1
∇f(xk), and y = x∗, we have

g(TL1(x
k))− g(x∗) ≤ L1

〈
xk − 1

L1
∇f(xk)− TL1(x

k), TL1(x
k)− x∗

〉
. (14.33)

Combining inequalities (14.32) and (14.33), along with the fact that F (xk+
1
2 ) ≤

F (T 1
L1
(xk),xk2) = F (TL1(x

k)), we finally have

F (xk+
1
2 )− F (x∗) ≤ F (TL1(x

k))− F (x∗)

= f(TL1(x
k)) + g(TL1(x

k))− f(x∗)− g(x∗)

≤ L1〈xk − TL1(x
k), TL1(x

k)− x∗〉+ L1

2
‖T 1

L1
(xk)− xk1‖2

= 〈GL1(x
k), TL1(x

k)− x∗〉+ 1

2L1
‖GL1(x

k)‖2

= 〈GL1(x
k), TL1(x

k)− xk〉+ 〈GL1(x
k),xk − x∗〉+ 1

2L1
‖GL1(x

k)‖2

= − 1

L1
‖GL1(x

k)‖2 + 〈GL1(x
k),xk − x∗〉+ 1

2L1
‖GL1(x

k)‖2

≤ 〈GL1(x
k),xk − x∗〉

≤ ‖GL1(x
k)‖ · ‖xk − x∗‖

= ‖G1
L1
(xk)‖ · ‖xk − x∗‖,

establishing (14.29). The inequality (14.30) follows by using the same argument but
on the sequence generated by the alternating minimization method with starting
point (x1

1,x
0
2) and assuming that the first index to be updated is i = 2.

With the help of Lemmas 14.13 and 14.14, we can prove a sublinear rate of
convergence of the alternating minimization method with an improved constant.

Theorem 14.15 (O(1/k) rate of alternating minimization—improved re-
sult). Suppose that Assumption 14.12 holds, and let {xk}k≥0 be the sequence gen-
erated by the alternating minimization method for solving problem (14.23). Then
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422 Chapter 14. Alternating Minimization

for all k ≥ 2,

F (xk)− Fopt ≤ max

{(
1

2

)(k−1)/2
(F (x0)− Fopt),

8min{L1, L2}R2

k − 1

}
, (14.34)

where R = RF (x0).

Proof. By Lemma 14.14 and Assumption 14.12(E),

F (xk+
1
2 )− Fopt ≤ ‖G1

L1
(xk)‖R,

where R = RF (x0). Now, by Lemma 14.13,

F (xk)− F (xk+1) ≥ F (xk)− F (xk+
1
2 ) ≥ 1

2L1
‖G1

L1
(xk)‖2

≥ (F (xk+
1
2 )− Fopt)

2

2L1R2

≥ 1

2L1R2
(F (xk+1)− Fopt)

2. (14.35)

Similarly, by Lemma 14.14 and Assumption 14.12(E),

F (xk+1)− Fopt ≤ ‖G2
L2
(xk+

1
2 )‖R.

Thus, utilizing Lemma 14.13 we obtain

F (xk)−F (xk+1) ≥ F (xk+
1
2 )−F (xk+1) ≥ 1

2L2
‖G2

L2
(xk+

1
2 )‖2 ≥ (F (xk+1)− Fopt)

2

2L2R2
,

which, combined with (14.35), yields the inequality

F (xk)− F (xk+1) ≥ 1

2min{L1, L2}R2
(F (xk+1)− Fopt)

2. (14.36)

Denoting ak = F (xk)−Fopt and γ = 2min{L1, L2}R2, we obtain that for all k ≥ 0,

ak − ak+1 ≥ 1

γ
a2k+1,

and thus, by Lemma 11.17, it holds that for all k ≥ 2

ak ≤ max

{(
1

2

)(k−1)/2
a0,

8min{L1, L2}R2

k − 1

}
,

which is the desired result (14.34).

Remark 14.16. Note that the constant in the efficiency estimate (14.34) depends
on min{L1, L2}. This means that the rate of convergence of the alternating mini-
mization method in the case of two blocks is dictated by the smallest block Lipschitz
constant, meaning by the smoother part of the function. This is not the case for
the efficiency estimate obtained in Theorem 14.11 for the convergence of alternat-
ing minimization with an arbitrary number of blocks, which depends on the global
Lipschitz constant Lf and is thus dictated by the “worst” block w.r.t. the level of
smoothness.

D
ow

nl
oa

de
d 

04
/1

1/
24

 to
 1

43
.2

15
.8

0.
16

9 
by

 J
ac

ob
 A

gu
ir

re
 (

ja
gu

ir
re

31
@

ga
te

ch
.e

du
).

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Chapter 15

ADMM

Underlying Spaces: In this chapter all the underlying spaces are Euclidean Rn

spaces endowed with the dot product and the l2-norm.

15.1 The Augmented Lagrangian Method

Consider the problem

Hopt = min{H(x, z) ≡ h1(x) + h2(z) : Ax+Bz = c}, (15.1)

where A ∈ Rm×n,B ∈ Rm×p, and c ∈ Rm. For now, we will assume that h1 and h2
are proper closed and convex functions. Later on, we will specify exact conditions
on the data (h1, h2,A,B, c) that will guarantee the validity of some convergence
results. To find a dual problem of (15.1), we begin by constructing a Lagrangian:

L(x, z;y) = h1(x) + h2(z) + 〈y,Ax +Bz− c〉.

The dual objective function is therefore given by

q(y) = min
x∈Rn,z∈Rp

{h1(x) + h2(z) + 〈y,Ax +Bz− c〉}

= −h∗1(−ATy)− h∗2(−BTy) − 〈c,y〉,

and the dual problem is given by

qopt = max
y∈Rm

{−h∗1(−ATy) − h∗2(−BTy)− 〈c,y〉} (15.2)

or, in minimization form, by

min
y∈Rm

{
h∗1(−ATy) + h∗2(−BTy) + 〈c,y〉

}
. (15.3)

The proximal point method was discussed in Section 10.5, where its convergence
was established. The general update step of the proximal point method employed
on problem (15.3) takes the form (ρ > 0 being a given constant)

yk+1 = argminy∈Rm

{
h∗1(−ATy) + h∗2(−BTy) + 〈c,y〉 + 1

2ρ
‖y− yk‖2

}
. (15.4)

423
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424 Chapter 15. ADMM

Assuming that the sum and affine rules of subdifferential calculus (Theorems 3.40
and 3.43) hold for the relevant functions, we can conclude by Fermat’s optimality
condition (Theorem 3.63) that (15.4) holds if and only if

0 ∈ −A∂h∗1(−ATyk+1)−B∂h∗2(−BTyk+1) + c+
1

ρ
(yk+1 − yk). (15.5)

Using the conjugate subgradient theorem (Corollary 4.21), we obtain that yk+1

satisfies (15.5) if and only if yk+1 = yk + ρ(Axk+1 +Bzk+1 − c), where xk+1 and
zk+1 satisfy

xk+1 ∈ argminx∈Rn{〈ATyk+1,x〉+ h1(x)},
zk+1 ∈ argminz∈Rp{〈BTyk+1, z〉+ h2(z)}.

Plugging the update equation for yk+1 into the above, we conclude that yk+1 sat-
isfies (15.5) if and only if

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c),

xk+1 ∈ argminx∈Rn{〈AT (yk + ρ(Axk+1 +Bzk+1 − c)),x〉 + h1(x)},
zk+1 ∈ argminz∈Rp{〈BT (yk + ρ(Axk+1 +Bzk+1 − c)), z〉 + h2(z)},

meaning if and only if (using the properness and convexity of h1 and h2, as well as
Fermat’s optimality condition)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c), (15.6)

0 ∈ AT (yk + ρ(Axk+1 +Bzk+1 − c)) + ∂h1(x
k+1), (15.7)

0 ∈ BT (yk + ρ(Axk+1 +Bzk+1 − c)) + ∂h2(z
k+1). (15.8)

Conditions (15.7) and (15.8) are satisfied if and only if (xk+1, zk+1) is a coordinate-
wise minimum (see Definition 14.2) of the function

H̃(x, z) ≡ h1(x) + h2(z) +
ρ

2

∥∥∥∥Ax+Bz− c+
1

ρ
yk
∥∥∥∥2 .

By Lemma 14.7, coordinate-wise minima points of H̃ are exactly the minimizers
of H̃, and therefore the system (15.6), (15.7), (15.8) leads us to the following pri-
mal representation of the dual proximal point method, known as the augmented
Lagrangian method.

The Augmented Lagrangian Method

Initialization: y0 ∈ Rm, ρ > 0.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(xk+1, zk+1) ∈ argmin
x∈Rn,z∈Rp

{
h1(x) + h2(z) +

ρ

2

∥∥∥∥Ax+Bz− c+
1

ρ
yk
∥∥∥∥2
}

(15.9)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c). (15.10)
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15.2. Alternating Direction Method of Multipliers (ADMM) 425

Naturally, step (15.9) is called the primal update step, while (15.10) is the dual
update step.

Remark 15.1 (augmented Lagrangian). The augmented Lagrangian associated
with the main problem (15.1) is defined to be

Lρ(x, z;y) = h1(x) + h2(z) + 〈y,Ax +Bz− c〉+ ρ

2
‖Ax+Bz− c‖2.

Obviously, L0 = L is the Lagrangian function, and Lρ for ρ > 0 can be considered
as a penalized version of the Lagrangian. The primal update step (15.9) can be
equivalently written as

(xk+1, zk+1) ∈ argminx∈Rn,z∈RpLρ(x, z;y
k).

The above representation of the primal update step as the outcome of the mini-
mization of the augmented Lagrangian function is the reason for the name of the
method.

15.2 Alternating Direction Method of Multipliers
(ADMM)

The augmented Lagrangianmethod is in general not an implementable method since
the primal update step (15.9) can be as hard to solve as the original problem. One
source of difficulty is the coupling term between the x and the z variables, which
is of the form ρ(xTATBz). The approach used in the alternating direction method
of multipliers (ADMM) to tackle this difficulty is to replace the exact minimization
in the primal update step (15.9) by one iteration of the alternating minimization
method; that is, the objective function of (15.9) is first minimized w.r.t. x, and then
w.r.t. z.

ADMM

Initialization: x0 ∈ Rn, z0 ∈ Rp, y0 ∈ Rm, ρ > 0.
General step: for any k = 0, 1, . . . execute the following:

(a) xk+1 ∈ argminx

{
h1(x) +

ρ
2

∥∥∥Ax+Bzk − c+ 1
ρy

k
∥∥∥2} ;

(b) zk+1 ∈ argminz

{
h2(z) +

ρ
2

∥∥∥Axk+1 +Bz− c+ 1
ρy

k
∥∥∥2} ;

(c) yk+1 = yk + ρ(Axk+1 +Bzk+1 − c).

15.2.1 Alternating Direction Proximal Method of Multipliers
(AD-PMM)

We will actually analyze a more general method than ADMM in which a quadratic
proximity term is added to the objective in the minimization problems of steps
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426 Chapter 15. ADMM

(a) and (b). We will assume that we are given two positive semidefinite matrices
G ∈ Sn+,Q ∈ S

p
+, and recall that ‖x‖2G = xTGx, ‖x‖2Q = xTQx.

AD-PMM

Initialization: x0 ∈ Rn, z0 ∈ Rp, y0 ∈ Rm, ρ > 0.
General step: for any k = 0, 1, . . . execute the following:

(a) xk+1 ∈ argminx∈Rn

{
h1(x) +

ρ
2

∥∥∥Ax+Bzk − c+ 1
ρy

k
∥∥∥2 + 1

2‖x− xk‖2G
}
;

(b) zk+1 ∈ argminz∈Rp

{
h2(z) +

ρ
2

∥∥∥Axk+1 +Bz− c+ 1
ρy

k
∥∥∥+ 1

2‖z− zk‖2Q
}
;

(c) yk+1 = yk + ρ(Axk+1 +Bzk+1 − c).

One important motivation for considering AD-PMM is that by using the prox-
imity terms, the minimization problems in steps (a) and (b) of ADMM can be
simplified considerably by choosing G = αI − ρATA with α ≥ ρλmax(A

TA) and
Q = βI − ρBTB with β ≥ ρλmax(B

TB). Then obviously G,Q ∈ Sn+, and the
function that needs to be minimized in the x-step can be simplified as follows:

h1(x) +
ρ

2

∥∥∥∥Ax+Bzk − c+
1

ρ
yk
∥∥∥∥2 + 1

2
‖x− xk‖2G

= h1(x) +
ρ

2

∥∥∥∥A(x− xk) +Axk +Bzk − c+
1

ρ
yk
∥∥∥∥2 + 1

2
‖x− xk‖2G

= h1(x) +
ρ

2
‖A(x− xk)‖2 +

〈
ρAx,Axk +Bzk − c+

1

ρ
yk
〉

+
α

2
‖x− xk‖2 − ρ

2
‖A(x− xk)‖2 + constant

= h1(x) + ρ

〈
Ax,Axk +Bzk − c+

1

ρ
yk
〉
+
α

2
‖x− xk‖2 + constant,

where by “constant” we mean a term that does not depend on x. We can therefore
conclude that step (a) of AD-PMM amounts to

xk+1 = argminx∈Rn

{
h1(x) + ρ

〈
Ax,Axk +Bzk − c+

1

ρ
yk
〉
+
α

2
‖x− xk‖2

}
,

(15.11)
and, similarly, step (b) of AD-PMM is the same as

zk+1 = argminz∈Rp

{
h2(z) + ρ

〈
Bz,Axk+1 +Bzk − c+

1

ρ
yk
〉
+
β

2
‖z− zk‖2

}
.

(15.12)
The functions minimized in the update formulas (15.11) and (15.12) are actually
constructed from the functions minimized in steps (a) and (b) of ADMM by lineariz-
ing the quadratic term and adding a proximity term. This is the reason why the
resulting method will be called the alternating direction linearized proximal method
of multipliers (AD-LPMM). We can also write the update formulas (15.11) and
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15.3. Convergence Analysis of AD-PMM 427

(15.12) in terms of proximal operators. Indeed, (15.11) can be rewritten equiva-
lently as

xk+1 = argminx

{
1

α
h1(x) +

1

2

∥∥∥∥x−
(
xk − ρ

α
AT

(
Axk +Bzk − c+

1

ρ
yk
))∥∥∥∥2

}
.

That is,

xk+1 = prox 1
αh1

[
xk − ρ

α
AT

(
Axk +Bzk − c+

1

ρ
yk
)]

.

Similarly, the z-step can be rewritten as

zk+1 = prox 1
β h2

[
zk − ρ

β
BT

(
Axk+1 +Bzk − c+

1

ρ
yk
)]

.

We can now summarize and write explicitly the AD-LPMM method.

AD-LPMM

Initialization: x0 ∈ Rn, z0 ∈ Rp, y0 ∈ Rm, ρ > 0, α ≥ ρλmax(A
TA), β ≥

ρλmax(B
TB).

General step: for any k = 0, 1, . . . execute the following:

(a) xk+1 = prox 1
αh1

[
xk − ρ

αA
T
(
Axk +Bzk − c+ 1

ρy
k
)]

;

(b) zk+1 = prox 1
β h2

[
zk − ρ

βB
T
(
Axk+1 +Bzk − c+ 1

ρy
k
)]

;

(c) yk+1 = yk + ρ(Axk+1 +Bzk+1 − c).

15.3 Convergence Analysis of AD-PMM

In this section we will develop a rate of convergence analysis of AD-PMM employed
on problem (15.1). Note that both ADMM and AD-LPMM are special cases of
AD-PMM. The following set of assumptions will be made.

Assumption 15.2.

(A) h1 : Rn → (−∞,∞] and h2 : Rp → (−∞,∞] are proper closed convex func-
tions.

(B) A ∈ Rm×n,B ∈ Rm×p, c ∈ Rm, ρ > 0.

(C) G ∈ Sn+, Q ∈ S
p
+.

(D) For any a ∈ Rn,b ∈ Rp the optimal sets of the problems

min
x∈Rn

{
h1(x) +

ρ

2
‖Ax‖2 + 1

2
‖x‖2G + 〈a,x〉

}
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428 Chapter 15. ADMM

and

min
z∈Rp

{
h2(z) +

ρ

2
‖Bz‖2 + 1

2
‖z‖2Q + 〈b, z〉

}
are nonempty.

(E) There exists x̂ ∈ ri(dom(h1)) and ẑ ∈ ri(dom(h2)) for which Ax̂+Bẑ = c.

(F) Problem (15.1) has a nonempty optimal set, denoted by X∗, and the corre-
sponding optimal value is Hopt.

Property (D) guarantees that the AD-PMM method is actually a well-defined
method.

By the strong duality theorem for convex problems (see Theorem A.1), under
Assumption 15.2, it follows that strong duality holds for the pair of problems (15.1)
and (15.2).

Theorem 15.3 (strong duality for the pair of problems (15.1) and (15.2)).
Suppose that Assumption 15.2 holds, and let Hopt, qopt be the optimal values of the
primal and dual problems (15.1) and (15.2), respectively. Then Hopt = qopt, and
the dual problem (15.2) possesses an optimal solution.

We will now prove an O(1/k) rate of convergence result of the sequence gen-
erated by AD-PMM.

Theorem 15.4 (O(1/k) rate of convergence of AD-PMM).87 Suppose that
Assumption 15.2 holds. Let {(xk, zk)}k≥0 be the sequence generated by AD-PMM
for solving problem (15.1). Let (x∗, z∗) be an optimal solution of problem (15.1) and
y∗ be an optimal solution of the dual problem (15.2). Suppose that γ > 0 is any
constant satisfying γ ≥ 2‖y∗‖. Then for all n ≥ 0,

H(x(n), z(n))−Hopt ≤
‖x∗ − x0‖2G + ‖z∗ − z0‖2C + 1

ρ(γ + ‖y0‖)2

2(n+ 1)
, (15.13)

‖Ax(n) +Bz(n) − c‖ ≤
‖x∗ − x0‖2G + ‖z∗ − z0‖2C + 1

ρ(γ + ‖y0‖)2

γ(n+ 1)
, (15.14)

where C = ρBTB+Q and

x(n) =
1

n+ 1

n∑
k=0

xk+1, z(n) =
1

n+ 1

n∑
k=0

zk+1.

Proof. By Fermat’s optimality condition (Theorem 3.63) and the update steps (a)
and (b) of AD-PMM, it follows that xk+1 and zk+1 satisfy

−ρAT

(
Axk+1 +Bzk − c+

1

ρ
yk
)

−G(xk+1 − xk) ∈ ∂h1(x
k+1), (15.15)

−ρBT

(
Axk+1 +Bzk+1 − c+

1

ρ
yk
)

−Q(zk+1 − zk) ∈ ∂h2(z
k+1). (15.16)

87The proof of Theorem 15.4 on the rate of convergence of AD-PMM is based on a combination
of the proof techniques of He and Yuan [65] and Gao and Zhang [58].
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15.3. Convergence Analysis of AD-PMM 429

We will use the following notation:

x̃k = xk+1,

z̃k = zk+1,

ỹk = yk + ρ(Axk+1 +Bzk − c).

Using (15.15), (15.16), the subgradient inequality, and the above notation, we obtain
that for any x ∈ dom(h1) and z ∈ dom(h2),

h1(x)− h1(x̃
k) +

〈
ρAT

(
Ax̃k +Bzk − c+

1

ρ
yk
)
+G(x̃k − xk),x− x̃k

〉
≥ 0,

h2(z)− h2(z̃
k) +

〈
ρBT

(
Ax̃k +Bz̃k − c+

1

ρ
yk
)
+Q(z̃k − zk), z− z̃k

〉
≥ 0.

Using the definition of ỹk, the above two inequalities can be rewritten as

h1(x) − h1(x̃
k) +

〈
AT ỹk +G(x̃k − xk),x− x̃k

〉
≥ 0,

h2(z) − h2(z̃
k) +

〈
BT ỹk + (ρBTB+Q)(z̃k − zk), z− z̃k

〉
≥ 0.

Adding the above two inequalities and using the identity

yk+1 − yk = ρ(Ax̃k +Bz̃k − c),

we can conclude that for any x ∈ dom(h1), z ∈ dom(h2), and y ∈ Rm,

H(x,z) −H(x̃k, z̃k) +

〈⎛
⎜⎜⎜⎜⎝
x− x̃k

z− z̃k

y − ỹk

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

AT ỹk

BT ỹk

−Ax̃k −Bz̃k + c

⎞
⎟⎟⎟⎟⎠−

⎛
⎜⎜⎜⎜⎝

G(xk − x̃k)

C(zk − z̃k)

1
ρ
(yk − yk+1)

⎞
⎟⎟⎟⎟⎠

〉
≥ 0,

(15.17)

where C = ρBTB+Q. We will use the following identity that holds for any positive
semidefinite matrix P:

(a− b)TP(c − d) =
1

2

(
‖a− d‖2P − ‖a− c‖2P + ‖b− c‖2P − ‖b− d‖2P

)
.

Using the above identity, we can conclude that

(x− x̃k)TG(xk − x̃k) =
1

2

(
‖x− x̃k‖2G − ‖x− xk‖2G + ‖x̃k − xk‖2G

)
≥ 1

2
‖x− x̃k‖2G − 1

2
‖x− xk‖2G, (15.18)

as well as

(z− z̃k)TC(zk − z̃k) =
1

2
‖z− z̃k‖2C − 1

2
‖z− zk‖2C +

1

2
‖zk − z̃k‖2C (15.19)

and

2(y − ỹk)T (yk − yk+1)

= ‖y − yk+1‖2 − ‖y − yk‖2 + ‖ỹk − yk‖2 − ‖ỹk − yk+1‖2

= ‖y − yk+1‖2 − ‖y − yk‖2 + ρ2‖Ax̃k +Bzk − c‖2

−‖yk + ρ(Ax̃k +Bzk − c)− yk − ρ(Ax̃k +Bz̃k − c)‖2

= ‖y − yk+1‖2 − ‖y − yk‖2 + ρ2‖Ax̃k +Bzk − c‖2 − ρ2‖B(zk − z̃k)‖2.
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430 Chapter 15. ADMM

Therefore,

1

ρ
(y−ỹk)T (yk−yk+1) ≥ 1

2ρ

(
‖y − yk+1‖2 − ‖y− yk‖2

)
−ρ

2
‖B(zk−z̃k)‖2. (15.20)

Denoting

H =

⎛⎜⎜⎜⎜⎝
G 0 0

0 C 0

0 0 1
ρI

⎞⎟⎟⎟⎟⎠ ,

as well as

w =

⎛⎜⎜⎜⎜⎝
x

z

y

⎞⎟⎟⎟⎟⎠ , wk =

⎛⎜⎜⎜⎜⎝
xk

zk

yk

⎞⎟⎟⎟⎟⎠ , w̃k =

⎛⎜⎜⎜⎜⎝
x̃k

z̃k

ỹk

⎞⎟⎟⎟⎟⎠ ,

we obtain by combining (15.18), (15.19), and (15.20) that〈⎛⎜⎜⎜⎜⎝x− x̃k

z− z̃k

y − ỹk

⎞⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎝
G(xk − x̃k)

C(zk − z̃k)

1
ρ (y

k − yk+1)

⎞⎟⎟⎟⎟⎠
〉

≥ 1

2
‖w−wk+1‖2H − 1

2
‖w −wk‖2H

+
1

2
‖zk − z̃k‖2C − ρ

2
‖B(zk − z̃k)‖2

≥ 1

2
‖w−wk+1‖2H − 1

2
‖w −wk‖2H.

Combining the last inequality with (15.17), we obtain that for any x ∈ dom(h1),
z ∈ dom(h2), and y ∈ Rm,

H(x, z)−H(x̃k, z̃k)+〈w−w̃k,Fw̃k+ c̃〉 ≥ 1

2
‖w−wk+1‖2H− 1

2
‖w−wk‖2H, (15.21)

where

F =

⎛⎜⎜⎜⎜⎝
0 0 AT

0 0 BT

−A −B 0

⎞⎟⎟⎟⎟⎠ , c̃ =

⎛⎜⎜⎜⎜⎝
0

0

c

⎞⎟⎟⎟⎟⎠ .

Note that

〈w − w̃k,Fw̃k + c̃〉 = 〈w − w̃k,F(w̃k −w) + Fw + c̃〉
= 〈w − w̃k,Fw + c̃〉,

where the second equality follows from the fact that F is skew symmetric (meaning
FT = −F). We can thus conclude that (15.21) can be rewritten as

H(x, z)−H(x̃k, z̃k) + 〈w − w̃k,Fw + c̃〉 ≥ 1

2
‖w −wk+1‖2H − 1

2
‖w−wk‖2H.
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15.3. Convergence Analysis of AD-PMM 431

Summing the above inequality over k = 0, 1, . . . , n yields the inequality

(n+1)H(x, z)−
n∑
k=0

H(x̃k, z̃k) +

〈
(n+ 1)w −

n∑
k=0

w̃k,Fw+ c̃

〉
≥ −1

2
‖w−w0‖2H.

Defining

w(n) =
1

n+ 1

n∑
k=0

w̃k,x(n) =
1

n+ 1

n∑
k=0

xk+1, z(n) =
1

n+ 1

n∑
k=0

zk+1

and using the convexity of H , we obtain that

H(x, z)−H(x(n), z(n)) + 〈w −w(n),Fw + c̃〉+ 1

2(n+ 1)
‖w−w0‖2H ≥ 0.

Using (again) the skew-symmetry of F, we can conclude that the above inequality
is the same as

H(x, z) −H(x(n), z(n)) + 〈w −w(n),Fw(n) + c̃〉+ 1

2(n+ 1)
‖w−w0‖2H ≥ 0.

In other words, for any x ∈ dom(h1) and z ∈ dom(h1),

H(x(n), z(n))−H(x, z) + 〈w(n) −w,Fw(n) + c̃〉 ≤ 1

2(n+ 1)
‖w−w0‖2H. (15.22)

Let (x∗, z∗) be an optimal solution of problem (15.1). Then H(x∗, z∗) = Hopt and
Ax∗+Bz∗ = c. Plugging x = x∗, z = z∗, and the expressions forw(n),w,w0,F,H, c̃
into (15.22), we obtain (denoting y(n) = 1

n+1

∑n
k=0 ỹ

k)

H(x(n), z(n))−Hopt + 〈x(n) − x∗,ATy(n)〉+ 〈z(n) − z∗,BTy(n)〉
+〈y(n) − y,−Ax(n) −Bz(n) + c〉

≤ 1

2(n+ 1)

{
‖x∗ − x0‖2G + ‖z∗ − z0‖2C +

1

ρ
‖y − y0‖2

}
.

Cancelling terms and using the fact that Ax∗ + Bz∗ = c, we obtain that the last
inequality is the same as

H(x(n), z(n))−Hopt+〈y,Ax(n)+Bz(n)−c〉 ≤
‖x∗ − x0‖2G + ‖z∗ − z0‖2C + 1

ρ‖y− y0‖2

2(n+ 1)
.

Since the above inequality holds for any y ∈ Rm, we can take the maximum of both
sides over all y ∈ B[0, γ] and obtain the inequality

H(x(n), z(n))−Hopt+γ‖Ax(n)+Bz(n)−c‖ ≤
‖x∗ − x0‖2G + ‖z∗ − z0‖2C + 1

ρ(γ + ‖y0‖)2

2(n+ 1)
.

Since γ ≥ 2‖y∗‖ for some optimal dual solution y∗ and strong duality holds (Theo-
rem 15.3), it follows by Theorem 3.60 that the two inequalities (15.13) and (15.14)
hold.
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432 Chapter 15. ADMM

15.4 Minimizing f1(x) + f2(Ax)

In this section we consider the model

min
x∈Rn

{f1(x) + f2(Ax)}, (15.23)

where f1, f2 are proper closed convex functions and A ∈ Rm×n. As usual, ρ > 0 is
a given constant. An implicit assumption will be that f1 and f2 are “proximable,”
which loosely speaking means that the prox operator of λf1 and λf2 can be effi-
ciently computed for any λ > 0. This is obviously a “virtual” assumption, and its
importance is only in the fact that it dictates the development of algorithms that
rely on prox computations of λf1 and λf2.

Problem (15.23) can rewritten as

min
x∈Rn,z∈Rm

{f1(x) + f2(z) : Ax− z = 0}. (15.24)

This fits the general model (15.1) with h1 = f1, h2 = f2, B = −I, and c = 0. A
direct implementation of ADMM leads to the following scheme (ρ > 0 is a given
constant):

xk+1 ∈ argminx∈Rn

[
f1(x) +

ρ

2

∥∥∥∥Ax− zk +
1

ρ
yk
∥∥∥∥2
]
, (15.25)

zk+1 = argminz∈Rm

[
f2(z) +

ρ

2

∥∥∥∥Axk+1 − z+
1

ρ
yk
∥∥∥∥2
]
,

yk+1 = yk + ρ(Axk+1 − zk+1).

The z-step can be rewritten as a prox step, thus resulting in the following algorithm
for solving problem (15.23).

Algorithm 1 [ADMM for solving (15.23)—version 1]

• Initialization: x0 ∈ R
n, z0,y0 ∈ R

m, ρ > 0.

• General step (k ≥ 0):

(a) xk+1 ∈ argminx∈Rn

[
f1(x) +

ρ
2

∥∥∥Ax− zk + 1
ρy

k
∥∥∥2] ;

(b) zk+1 = prox 1
ρ f2

(
Axk+1 + 1

ρy
k
)
;

(c) yk+1 = yk + ρ(Axk+1 − zk+1).

Step (a) of Algorithm 1 might be difficult to compute since the minimization
in step (a) is more involved than a prox computation due to the quadratic term
ρ
2x

TATAx. We can actually employ ADMM in a different way that will refrain
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15.4. Minimizing f1(x) + f2(Ax) 433

from the type of computation made in step (a). For that, we will rewrite problem
(15.23) as

min
x,w∈Rn,z∈Rm

{f1(w) + f2(z) : Ax− z = 0,x−w = 0} .

The above problem fits model (15.1) with h1 ≡ 0, h2(z,w) = f1(z) + f2(w), B =

−I, and
(
A

I

)
taking the place of A. The dual vector y ∈ Rm+n is of the form

y = (yT1 ,y
T
2 )
T , where y1 ∈ Rm and y2 ∈ Rn. In the above reformulation we have

two blocks of vectors: x and (z,w). The x-step is given by

xk+1 = argminx∈Rn

[∥∥∥∥Ax− zk +
1

ρ
yk1

∥∥∥∥2 + ∥∥∥∥x−wk +
1

ρ
yk2

∥∥∥∥2
]

= (I+ATA)−1
(
AT

[
zk − 1

ρ
yk1

]
+wk − 1

ρ
yk2

)
.

The (z,w)-step is

zk+1 = prox 1
ρ f2

(
Axk+1 +

1

ρ
yk1

)
,

wk+1 = prox 1
ρ f1

(
xk+1 +

1

ρ
yk2

)
.

The method is summarized in the following.

Algorithm 2 [ADMM for solving (15.23)—version 2]

• Initialization: x0,w0,y0
2 ∈ Rn, z0,y0

1 ∈ Rm, ρ > 0.

• General step (k ≥ 0):

xk+1 = (I+ATA)−1
(
AT

[
zk − 1

ρ
yk1

]
+wk − 1

ρ
yk2

)
,

zk+1 = prox 1
ρ f2

(
Axk+1 +

1

ρ
yk1

)
,

wk+1 = prox 1
ρ f1

(
xk+1 +

1

ρ
yk2

)
,

yk+1
1 = yk1 + ρ(Axk+1 − zk+1),

yk+1
2 = yk2 + ρ(xk+1 −wk+1).

Algorithm 2 might still be too computationally demanding since it involves the
evaluation of the inverse of I + ATA (or at least the evaluation of ATA and a
solution of a linear system at each iteration), which might be a difficult task in large-
scale problems. We can alternatively employ AD-LPMM on problem (15.24) and
obtain the following scheme that does not involve any matrix inverse calculations.
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434 Chapter 15. ADMM

Algorithm 3 [AD-LPMM for solving (15.23)]

• Initialization: x0 ∈ Rn, z0,y0 ∈ Rm, ρ > 0, α ≥ ρλmax(A
TA), β ≥ ρ.

• General step (k ≥ 0):

xk+1 = prox 1
α f1

[
xk − ρ

α
AT

(
Axk − zk +

1

ρ
yk
)]

,

zk+1 = prox 1
β f2

[
zk +

ρ

β

(
Axk+1 − zk +

1

ρ
yk
)]

,

yk+1 = yk + ρ(Axk+1 − zk+1).

The above scheme has the advantage that it only requires simple linear algebra
operations (no more than matrix/vector multiplications) and prox evaluations of λf1
and λf2 for different values of λ > 0.

Example 15.5 (l1-regularized least squares). Consider the problem

min
x∈Rn

{
1

2
‖Ax− b‖22 + λ‖x‖1

}
, (15.26)

where A ∈ Rm×n,b ∈ Rm and λ > 0. Problem (15.26) fits the composite model
(15.23) with f1(x) = λ‖x‖1 and f2(y) ≡ 1

2‖y − b‖22. For any γ > 0, proxγf1 = Tγλ
(by Example 6.8) and proxγf2(y) =

y+γb
γ+1 (by Section 6.2.3). Step (a) of Algorithm 1

(first version of ADMM) has the form

xk+1 ∈ argminx∈Rn

[
λ‖x‖1 +

ρ

2

∥∥∥∥Ax− zk +
1

ρ
yk
∥∥∥∥2
]
,

which actually means that this version of ADMM is completely useless since it sug-
gests to solve an l1-regularized least squares problem by a sequence of l1-regularized
least squares problems.

Algorithm 2 (second version of ADMM) has the following form.

ADMM, version 2 (Algorithm 2):

xk+1 = (I+ATA)−1
(
AT

[
zk − 1

ρ
yk1

]
+wk − 1

ρ
yk2

)
,

zk+1 =
ρAxk+1 + yk1 + b

ρ+ 1
,

wk+1 = Tλ
ρ

(
xk+1 +

1

ρ
yk2

)
,

yk+1
1 = yk1 + ρ(Axk+1 − zk+1),

yk+1
2 = yk2 + ρ(xk+1 −wk+1).

An implementation of the above ADMM variant will require to compute the
matrix ATA in a preprocess and to solve at each iteration an n× n linear system
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Figure 15.1. Results of 100 iterations of ISTA, FISTA, ADMM (Algo-
rithm 2) and AD-LPMM (Algorithm 3) on an l1-regularized least squares problem.

(or, alternatively, compute the inverse of I +ATA in a preprocess). These opera-
tions might be difficult to execute in large-scale problems.

The general step of Algorithm 3 (which is essentially AD-LPMM) with α =
λmax(A

TA)ρ and β = ρ takes the following form (denoting L = λmax(A
TA)).

AD-LPMM (Algorithm 3):

xk+1 = T λ
Lρ

[
xk − 1

L
AT

(
Axk − zk +

1

ρ
yk
)]

,

zk+1 =
ρAxk+1 + yk + b

ρ+ 1
,

yk+1 = yk + ρ(Axk+1 − zk+1).

The dominant computations in AD-LPMM are matrix/vector multiplications.
To illustrate the performance of the above two methods, we repeat the ex-

periment described in Example 10.38 on the l1-regularized least squares problem.
We ran ADMM and AD-LPMM on the exact same instance, and the decay of the
function values as a function of the iteration index k for the first 100 iterations is de-
scribed in Figure 15.1. Clearly, ISTA and AD-LPMM exhibit the same performance,
while ADMM seems to outperform both of them. This is actually not surprising
since the computations carried out at each iteration of ADMM (solution of linear
systems) are much heavier than the computations per iteration of AD-LPMM and
ISTA (matrix/vector multiplications). In that respect, the comparison is in fact
not fair and biased in favor of ADMM. What is definitely interesting is that FISTA
significantly outperforms ADMM starting from approximately 50 iterations despite
the fact that it is a simpler algorithm that requires substantially less computational
effort per iteration. One possible reason is that FISTA is a method with a provably
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436 Chapter 15. ADMM

O(1/k2) rate of convergence in function values, while ADMM is only guaranteed to
converge at a rate of O(1/k).

Example 15.6 (robust regression). Consider the problem

min
x

‖Ax− b‖1, (15.27)

where A ∈ Rm×n and b ∈ Rm. Problem (15.27) fits the composite model (15.23)
with f1 ≡ 0 and f2(y) = ‖y − b‖1. Let ρ > 0. For any γ > 0, proxγf1(y) = y and
proxγf2(y) = Tγ(y − b) + b (by Example 6.8 and Theorem 6.11). Therefore, the
general step of Algorithm 1 (first version of ADMM) takes the following form.

ADMM, version 1 (Algorithm 1):

xk+1 = argminx∈Rm

∥∥∥∥Ax− zk +
1

ρ
yk
∥∥∥∥2 ,

zk+1 = T 1
ρ

(
Axk+1 +

1

ρ
yk − b

)
+ b,

yk+1 = yk + ρ(Axk+1 − zk+1).

The general step of Algorithm 2 (second version of ADMM) reads as follows:

xk+1 = (I+ATA)−1
(
AT

[
zk − 1

ρ
yk1

]
+wk − 1

ρ
yk2

)
,

zk+1 = T 1
ρ

(
Axk+1 +

1

ρ
yk1 − b

)
+ b,

wk+1 = xk+1 +
1

ρ
yk2 ,

yk+1
1 = yk1 + ρ(Axk+1 − zk+1),

yk+1
2 = yk2 + ρ(xk+1 −wk+1).

Plugging the expression for wk+1 into the update formula of yk+1
2 , we obtain that

yk+1
2 = 0. Thus, if we start with y0

2 = 0, then yk2 = 0 for all k ≥ 0, and conse-
quently wk = xk for all k. The algorithm thus reduces to the following.

ADMM, version 2 (Algorithm 2):

xk+1 = (I+ATA)−1
(
AT

[
zk − 1

ρ
yk1

]
+ xk

)
,

zk+1 = T 1
ρ

(
Axk+1 +

1

ρ
yk1 − b

)
+ b,

yk+1
1 = yk1 + ρ(Axk+1 − zk+1).

Algorithm 3 (which is essentially AD-LPMM) with α = λmax(A
TA)ρ and

β = ρ takes the following form (denoting L = λmax(A
TA)).
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15.4. Minimizing f1(x) + f2(Ax) 437

AD-LPMM (Algorithm 3):

xk+1 = xk − 1

L
AT

(
Axk − zk +

1

ρ
yk
)
,

zk+1 = T 1
ρ

[(
Axk+1 − b+

1

ρ
yk
)]

+ b,

yk+1 = yk + ρ(Axk+1 − zk+1).

Example 15.7 (basis pursuit). Consider the problem

min ‖x‖1

s.t. Ax = b,
(15.28)

where A ∈ Rm×n and b ∈ Rm. Problem (15.28) fits the composite model (15.23)
with f1(x) = ‖x‖1 and f2 = δ{b}. Let ρ > 0. For any γ > 0, proxγf1 = Tγ (by
Example 6.8) and proxγ2f2 ≡ b. Algorithm 1 is actually not particularly imple-
mentable since its first update step is

xk+1 ∈ argminx∈Rn

{
‖x‖1 +

ρ

2

∥∥∥∥Ax− zk +
1

ρ
yk
∥∥∥∥2
}
,

which does not seem to be simpler to solve than the original problem (15.28).
Algorithm 2 takes the following form (assuming that z0 = b).

ADMM, version 2 (Algorithm 2):

xk+1 = (I+ATA)−1
(
AT

[
b− 1

ρ
yk1

]
+wk − 1

ρ
yk2

)
,

wk+1 = T 1
ρ

(
xk+1 +

1

ρ
yk2

)
,

yk+1
1 = yk1 + ρ(Axk+1 − b),

yk+1
2 = yk2 + ρ(xk+1 −wk+1).

Finally, assuming that z0 = b, Algorithm 3 with α = λmax(A
TA)ρ and β = ρ

reduces to the following simple update steps (denoting L = λmax(A
TA)).

AD-LPMM (Algorithm 3):

xk+1 = T 1
ρL

[
xk − 1

L
AT

(
Axk − b+

1

ρ
yk
)]

,

yk+1 = yk + ρ(Axk+1 − b).

Example 15.8 (minimizing
∑p

i=1 gi(Aix)). Consider now the problem

min
x∈Rn

p∑
i=1

gi(Aix), (15.29)
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438 Chapter 15. ADMM

where g1, g2, . . . , gp are proper closed and convex functions and Ai ∈ Rmi×n for all
i = 1, 2, . . . , p. Problem (15.29) fits the composite model (15.23) with

• f1 ≡ 0;

• f2(y) =
∑p

i=1 gi(yi), where we assume that y ∈ Rm1+m2+···+mp is of the form
y = (yT1 ,y

T
2 , . . . ,y

T
p )
T , where yi ∈ Rmi ;

• the matrix A ∈ R
(m1+m2+...+mp)×n given by A = (AT

1 ,A
T
2 , . . . ,A

T
p )
T .

For any γ > 0, proxγf1(x) = x and proxγf2(y)i = proxγgi(yi), i = 1, 2, . . . , p (by
Theorem 6.6). The general update step of the first version of ADMM (Algorithm
1) has the form

xk+1 ∈ argminx∈Rn

p∑
i=1

∥∥∥∥Aix− zki +
1

ρ
yki

∥∥∥∥2 , (15.30)

zk+1
i = prox 1

ρ gi

(
Aix

k+1 +
1

ρ
yki

)
, i = 1, 2, . . . , p,

yk+1
i = yki + ρ(Aix

k+1 − zk+1
i ), i = 1, 2, . . . , p.

In the case where A has full column rank, step (15.30) can be written more explic-
itly, leading to the following representation.

ADMM, version 1 (Algorithm 1):

xk+1 =

(
p∑
i=1

AT
i Ai

)−1 p∑
i=1

AT
i

(
zki − 1

ρ
yki

)
,

zk+1
i = prox 1

ρ gi

(
Aix

k+1 +
1

ρ
yki

)
, i = 1, 2, . . . , p,

yk+1
i = yki + ρ(Aix

k+1 − zk+1
i ), i = 1, 2, . . . , p.

The second version of ADMM (Algorithm 2) is not simpler than the first version,
and we will therefore not write it explicitly. AD-LPMM (Algorithm 3) invoked
with the constants α = λmax(

∑p
i=1 A

T
i Ai)ρ and β = ρ reads as follows (denoting

L = λmax(
∑p

i=1 A
T
i Ai)).

AD-LPMM (Algorithm 3):

xk+1 = xk − 1

L

p∑
i=1

AT
i

(
Aix

k − zki +
1

ρ
yki

)
,

zk+1
i = prox 1

ρ gi

(
Aix

k+1 +
1

ρ
yki

)
, i = 1, 2, . . . , p,

yk+1
i = yki + ρ(Aix

k+1 − zk+1
i ), i = 1, 2, . . . , p.
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Appendix A

Strong Duality and
Optimality Conditions

The following strong duality theorem is taken from [29, Proposition 6.4.4].

Theorem A.1 (strong duality theorem). Consider the optimization problem

fopt = min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) ≤ 0, j = 1, 2, . . . , p,

sk(x) = 0, k = 1, 2, . . . , q,

x ∈ X,

(A.1)

where X = P ∩ C with P ⊆ E being a convex polyhedral set and C ⊆ E convex.
The functions f, gi, i = 1, 2, . . . ,m : E → (−∞,∞] are convex, and their domains
satisfy X ⊆ dom(f), X ⊆ dom(gi), i = 1, 2, . . . ,m. The functions hj , sk, j =
1, 2, . . . , p, k = 1, 2, . . . , q, are affine functions. Suppose there exist

(i) a feasible solution x̄ satisfying gi(x̄) < 0 for all i = 1, 2, . . . ,m;

(ii) a vector satisfying all the affine constraints hj(x) ≤ 0, j = 1, 2, . . . , p, sk(x) =
0, k = 1, 2, . . . , q, and that is in P ∩ ri(C).

Then if problem (A.1) has a finite optimal value, then the optimal value of the dual
problem

qopt = max{q(λ,η,μ) : (λ,η,μ) ∈ dom(−q)},

where q : Rm+ × R
p
+ × Rq → R ∪ {−∞} is given by

q(λ,η,μ) = min
x∈X

L(x,λ,η,μ)

= min
x∈X

⎡⎣f(x) + m∑
i=1

λigi(x) +

p∑
j=1

ηjhj(x) +

q∑
k=1

μksk(x)

⎤⎦ ,
439
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440 Appendix A. Strong Duality and Optimality Conditions

is attained, and the optimal values of the primal and dual problems are the same:

fopt = qopt.

We also recall some well-known optimality conditions expressed in terms of
the Lagrangian function in cases where strong duality holds.

Theorem A.2 (optimality conditions under strong duality). Consider the
problem

(P)

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p,

x ∈ X,

where f, g1, g2, . . . , gm, h1, h2, . . . , hp : E → (−∞,∞], and X ⊆ E. Assume that
X ⊆ dom(f), X ⊆ dom(gi), and X ⊆ dom(hj) for all i = 1, 2, . . . ,m, j =
1, 2, . . . , p. Let (D) be the following dual problem:

(D)
max q(λ,μ)

s.t. (λ,μ) ∈ dom(−q),

where

q(λ,μ) = min
x∈X

⎧⎨⎩L(x;λ,μ) ≡ f(x) +

m∑
i=1

λigi(x) +

p∑
j=1

μjhj(x)

⎫⎬⎭ ,

dom(−q) = {(λ,μ) ∈ R
m
+ × R

p : q(λ,μ) > −∞}.

Suppose that the optimal value of problem (P) is finite and equal to the optimal
value of problem (D). Then x∗, (λ∗,μ∗) are optimal solutions of problems (P) and
(D), respectively, if and only if

(i) x∗ is a feasible solution of (P);

(ii) λ∗ ≥ 0;

(iii) λ∗i gi(x
∗) = 0, i = 1, 2, . . . ,m;

(iv) x∗ ∈ argminx∈XL(x;λ
∗,μ∗).

Proof. Denote the optimal values of problem (P) and (D) by fopt and qopt, re-
spectively. An underlying assumption of the theorem is that fopt = qopt. If x

∗ and
(λ∗,μ∗) are the optimal solutions of problems (P) and (D), then obviously (i) and
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Appendix A. Strong Duality and Optimality Conditions 441

(ii) are satisfied. In addition,

fopt = qopt = q(λ∗,μ∗)

= min
x∈X

L(x,λ∗,μ∗)

≤ L(x∗,λ∗,μ∗)

= f(x∗) +
m∑
i=1

λ∗i gi(x
∗) +

p∑
j=1

μ∗jhj(x
∗)

≤ f(x∗),

where the last inequality follows by the facts that hj(x
∗) = 0, λ∗i ≥ 0, and

gi(x
∗) ≤ 0. Since fopt = f(x∗), all of the inequalities in the above chain of

equalities and inequalities are actually equalities. This implies in particular that
x∗ ∈ argminx∈XL(x,λ

∗,μ∗), meaning property (iv), and that
∑m
i=1 λ

∗
i gi(x

∗) = 0,
which by the fact that λ∗i gi(x

∗) ≤ 0 for any i, implies that λ∗i gi(x
∗) = 0 for any i,

showing the validity of property (iii).
To prove the reverse direction, assume that properties (i)–(iv) are satisfied.

Then

q(λ∗,μ∗) = minx∈X L(x,λ
∗,μ∗) [definition of q]

= L(x∗,λ∗,μ∗) [property (iv)]

= f(x∗) +
m∑
i=1

λ∗i gi(x
∗) +

p∑
j=1

μ∗jhj(x
∗)

= f(x∗). [property (iii)]

By the weak duality theorem, since x∗ and (λ∗,μ∗) are primal and dual feasible
solutions with equal primal and dual objective functions, it follows that they are
the optimal solutions of their corresponding problems.
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Appendix B

Tables

Support Functions

C σC(y) Assumptions Reference

{b1,b2, . . . ,bn} maxi=1,2,...,n〈bi,y〉 bi ∈ E Example 2.25

K δK◦ (y) K – cone Example 2.26

R
n
+ δRn− (y) E = R

n Example 2.27

Δn max{y1, y2, . . . , yn} E = R
n Example 2.36

{x ∈ R
n : Ax ≤ 0} δ{AT λ:λ∈Rm

+
}(y) E = R

n, A ∈
R

m×n
Example 2.29

{x ∈ R
n : Bx = b} 〈y,x0〉+ δ

Range(BT )
(y) E = R

n, B ∈
R

m×n, b ∈ R
m,

Bx0 = b

Example 2.30

B‖·‖[0, 1] ‖y‖∗ - Example 2.31

Weak Subdifferential Results

Function Weak result Setting Reference

−q = neg-
ative dual
function

−g(x0) ∈ ∂(−q)(λ0) q(λ) = min
x∈X

f(x) + λ
T
g(x), f :

E → R, g : E → R
m, x0 = a

minimizer of f(x)+λT
0 g(x) over

X

Example 3.7

f(X) =
λmax(X)

vvT ∈ ∂f(X) f : S
n → R, v = normalized

maximum eigenvector of X ∈ S
n

Example 3.8

f(x) =
‖x‖1

sgn(x) ∈ ∂f(x) E = R
n Example 3.42

f(x) =
λmax(A0 +∑m

i=1 xiAi)

(ỹTAiỹ)
m
i=1 ∈ ∂f(x) ỹ = normalized maximum eigen-

vector of A0 +
∑m

i=1 xiAi

Example 3.56

443
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444 Appendix B. Tables

Strong Subdifferential Results

f(x) ∂f(x) Assumptions Reference

‖x‖ B‖·‖∗ [0, 1] x = 0 Example 3.3

‖x‖1

⎧⎪⎨
⎪⎩

∑
i∈I �=(x)

sgn(xi)ei +
∑

i∈I0(x)

[−ei, ei]

⎫⎪⎬
⎪⎭ E = R

n, I�=(x) =
{i : xi = 0},
I0(x) = {i : xi =
0}.

Example 3.41

‖x‖2

⎧⎨
⎩
{

x
‖x‖2

}
, x = 0,

B‖·‖2 [0, 1], x = 0.
E = R

n Example 3.34

‖x‖∞

⎧⎪⎪⎨
⎪⎪⎩
∑

i∈I(x)

λisgn(xi)ei :

∑
i∈I(x)

λi = 1

λi ≥ 0

⎫⎪⎪⎬
⎪⎪⎭ E = R

n, I(x) = {i :
‖x‖∞ = |xi|}, x =
0

Example 3.52

max(x)

⎧⎨
⎩
∑

i∈I(x)

λiei :
∑

i∈I(x)

λi = 1, λi ≥ 0

⎫⎬
⎭ E = R

n, I(x) = {i :
max(x) = xi}

Example 3.51

max(x) Δn E = R
n, x = αe for

some α ∈ R

Example 3.51

δS(x) NS(x) ∅ = S ⊆ E Example 3.5

δB[0,1](x)

⎧⎨
⎩ {y ∈ E

∗ : ‖y‖∗ ≤ 〈y,x〉} , ‖x‖ ≤ 1,

∅, ‖x‖ > 1.
Example 3.6

‖Ax + b‖1
∑

i∈I �=(x)

sgn(a
T
i x + bi)ai +

∑
i∈I0(x)

[−ai, ai] E = R
n, A ∈ R

m×n,
b ∈ R

m, I�=(x) =

{i : aT
i x + bi = 0},

I0(x) = {i : aT
i x +

bi = 0}

Example 3.44

‖Ax + b‖2

⎧⎨
⎩

AT (Ax+b)
‖Ax+b‖2 , Ax + b = 0,

ATB‖·‖2 [0, 1], Ax + b = 0.
E = R

n, A ∈ R
m×n,

b ∈ R
m

Example 3.45

‖Ax + b‖∞

⎧⎨
⎩
∑
i∈Ix

λisgn(a
T
i x+ bi)ai :

∑
i∈Ix

λi = 1

λi ≥ 0

⎫⎬
⎭ E = R

n, A ∈ R
m×n,

b ∈ R
m, Ix =

{i : ‖Ax + b‖∞ =

|aT
i x + bi|}, Ax +

b = 0

Example 3.54

‖Ax + b‖∞ ATB‖·‖1 [0, 1] same as above but
with Ax + b = 0

Example 3.54

maxi{aT
i x+

b}

⎧⎨
⎩
∑

i∈I(x)

λiai :
∑

i∈I(x)

λi = 1, λi ≥ 0

⎫⎬
⎭ E = R

n,ai ∈ R
n,

bi ∈ R, I(x) = {i :

f(x) = aT
i x+ bi}

Example 3.53

1
2dC(x)2 {x− PC(x)} C = nonempty

closed and convex,
E = Euclidean

Example 3.31

dC(x)

⎧⎨
⎩
{

x−PC (x)

dC(x)

}
, x /∈ C,

NC(x) ∩ B[0, 1] x ∈ C.
C = nonempty
closed and convex,
E = Euclidean

Example 3.49
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Appendix B. Tables 445

Conjugate Calculus Rules

g(x) g∗(y) Reference

∑m
i=1 fi(xi)

∑m
i=1 f

∗
i (yi) Theorem 4.12

αf(x) (α > 0) αf∗(y/α) Theorem 4.14

αf(x/α) (α > 0) αf∗(y) Theorem 4.14

f(A(x− a)) + 〈b,x〉+ c f∗
(
(AT )−1(y − b)

)
+ 〈a,y〉− c−〈a,b〉 Theorem 4.13

Conjugate Functions

f dom(f) f∗ Assumptions Reference

ex R y log y − y (dom(f∗) =
R+)

– Section 4.4.1

− log x R++ −1 − log(−y) (dom(f∗)
= R−−)

– Section 4.4.2

max{1 − x, 0} R y + δ[−1,0](y) – Section 4.4.3

1
p |x|

p R
1
q |y|

q p > 1, 1
p + 1

q = 1 Section 4.4.4

− xp

p
R+ − (−y)q

q (dom(f∗) =

R−−)

0 < p < 1, 1
p +

1
q = 1

Section 4.4.5

1
2x

TAx +

bTx + c
R

n 1
2 (y−b)TA−1(y−b)−c A ∈ S

n
++, b ∈

R
n, c ∈ R

Section 4.4.6

1
2x

TAx +

bTx + c
R

n 1
2 (y−b)TA†(y−b)− c

(dom(f∗) =
b + Range(A))

A ∈ S
n
+, b ∈

R
n, c ∈ R

Section 4.4.7

∑n
i=1 xi log xi R

n
+

∑n
i=1 e

yi−1 – Section 4.4.8

∑n
i=1 xi log xi Δn log

(∑n
i=1 e

yi
)

– Section 4.4.10

−
∑n

i=1 log xi R
n
++ −n−

∑n
i=1 log(−yi)

(dom(f∗) = R
n
−−)

– Section 4.4.9

log
(∑n

i=1 e
xi
)

R
n ∑n

i=1 yi log yi
(dom(f∗) = Δn)

– Section 4.4.11

maxi{xi} R
n δΔn(y) – Example 4.10

δC(x) C σC(y) ∅ = C ⊆ E Example 4.2

σC(x) dom(σC) δcl(conv(C))(y) ∅ = C ⊆ E Example 4.9

‖x‖ E δB‖·‖∗ [0,1](y) – Section 4.4.12

−
√
α2 − ‖x‖2 B[0, α] α

√
‖y‖2∗ + 1 α > 0 Section 4.4.13√

α2 + ‖x‖2 E −α
√

1− ‖y‖2∗
(domf∗ = B‖·‖∗ [0, 1])

α > 0 Section 4.4.14

1
2‖x‖

2 E
1
2 ‖y‖

2
∗ – Section 4.4.15

1
2‖x‖

2 + δC(x) C 1
2‖y‖

2 − 1
2d

2
C(y) ∅ = C ⊆ E, E

Euclidean
Example 4.4

1
2 ‖x‖

2− 1
2 d

2
C(x) E

1
2 ‖y‖

2 + δC(y) ∅ = C ⊆ E

closed convex. E

Euclidean

Example 4.11
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446 Appendix B. Tables

Conjugates of Symmetric Spectral Functions over S
n (from Example 7.16)

g(X) dom(g) g∗(Y) dom(g∗)

λmax(X) S
n δΥn(Y) Υn

α‖X‖F (α > 0) S
n δB‖·‖F [0,α](Y) B‖·‖F [0, α]

α‖X‖2F (α > 0) S
n 1

4α‖Y‖
2
F S

n

α‖X‖2,2 (α > 0) S
n δB‖·‖S1

[0,α](Y) B‖·‖S1
[0, α]

α‖X‖S1 (α > 0) S
n δB‖·‖2,2 [0,α](Y) B‖·‖2,2 [0, α]

− log det(X) S
n
++ −n− log det(−Y) S

n
−−

n∑
i=1

λi(X) log(λi(X)) S
n
+

n∑
i=1

eλi(Y)−1
S
n

n∑
i=1

λi(X) log(λi(X)) Υn log
(∑n

i=1 e
λi(Y)

)
S
n

Conjugates of Symmetric Spectral Functions over R
m×n (from Example 7.27)

g(X) dom(g) g∗(Y) dom(g∗)

ασ1(X) (α > 0) R
m×n δB‖·‖S1

[0,α](Y) B‖·‖S1
[0, α]

α‖X‖F (α > 0) R
m×n δB‖·‖F [0,α](Y) B‖·‖F [0, α]

α‖X‖2F (α > 0) R
m×n 1

4α‖Y‖
2
F R

m×n

α‖X‖S1 (α > 0) R
m×n δB‖·‖S∞

[0,α](Y) B‖·‖S∞ [0, α]

Smooth Functions

f(x) dom(f) Parameter Norm Reference

1
2x

TAx + bTx + c R
n ‖A‖p,q lp Example 5.2

(A ∈ S
n,b ∈ R

n, c ∈ R)

〈b,x〉+ c E 0 any norm Example 5.3

(b ∈ E
∗, c ∈ R)

1
2‖x‖

2
p, p ∈ [2,∞) R

n p− 1 lp Example 5.11√
1 + ‖x‖22 R

n 1 l2 Example 5.14

log(
∑n

i=1 e
xi ) R

n 1 l2, l∞ Example 5.15

1
2d

2
C(x) E 1 Euclidean Example 5.5

(∅ = C ⊆ E closed convex)

1
2 ‖x‖

2 − 1
2d

2
C(x) E 1 Euclidean Example 5.6

(∅ = C ⊆ E closed convex)

Hμ(x) (μ > 0) E
1
μ Euclidean Example 6.62
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Appendix B. Tables 447

Strongly Convex Functions

f(x) dom(f) Strongly
convex

parameter

Norm Reference

1
2x

TAx + 2bTx + c R
n λmin(A) l2 Example 5.19

(A ∈ S
n
++,b ∈ R

n, c ∈ R)

1
2‖x‖

2 + δC(x) C 1 Euclidean Example 5.21

(∅ = C ⊆ E convex)

−
√

1− ‖x‖22 B‖·‖2 [0, 1] 1 l2 Example 5.29

1
2‖x‖

2
p (p ∈ (1, 2]) R

n p − 1 lp Example 5.28∑n
i=1 xi log xi Δn 1 l2 or l1 Example 5.27

Orthogonal Projections

Set (C) PC(x) Assumptions Reference

R
n
+ [x]+ – Lemma 6.26

Box[�,u] PC(x)i = min{max{xi, i}, ui} i ≤ ui Lemma 6.26

B‖·‖2 [c, r] c + r
max{‖x−c‖2,r} (x− c) c ∈ R

n, r > 0 Lemma 6.26

{x : Ax = b} x−AT (AAT )−1(Ax− b) A ∈ R
m×n,

b ∈ R
m,

A full row rank

Lemma 6.26

{x : aTx ≤ b} x− [aT x−b]+

‖a‖2 a 0 = a ∈ R
n, b ∈

R

Lemma 6.26

Δn [x − μ∗e]+ where μ∗ ∈ R satisfies

eT [x− μ∗e]+ = 1

Corollary 6.29

Ha,b ∩ Box[�,u] PBox[�,u](x−μ∗a) where μ∗ ∈ R sat-

isfies aTPBox[�,u](x− μ∗a) = b

a ∈ R
n\{0}, b ∈

R

Theorem 6.27

H−
a,b ∩ Box[�,u]

⎧⎨
⎩ PBox[�,u](x), aTvx ≤ b,

PBox[�,u](x− λ∗a), aTvx > b,

vx = PBox[�,u](x), aTPBox[�,u](x −
λ∗a) = b, λ∗ > 0

a ∈ R
n\{0}, b ∈

R

Example 6.32

B‖·‖1 [0, α]

⎧⎨
⎩ x, ‖x‖1 ≤ α,

Tλ∗ (x), ‖x‖1 > α,

‖Tλ∗(x)‖1 = α, λ∗ > 0

α > 0 Example 6.33

{x : ωT |x| ≤ β,

−α ≤ x ≤ α}

⎧⎨
⎩ vx, ωT |vx| ≤ β,

Sλ∗ω,α(x), ωT |vx| > β,

vx = PBox[−α,α](x),

ωT |Sλ∗ω,α(x)| = β, λ∗ > 0

ω ∈ R
n
+, α ∈

[0,∞]n, β ∈
R++

Example 6.34

{x > 0 : Πxi ≥ α}

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x, x ∈ C,⎛
⎝ xj+

√
x2
j
+4λ∗

2

⎞
⎠

n

j=1

, x /∈ C,

Πn
j=1

(
(xj +

√
x2
j + 4λ∗)/2

)
=

α, λ∗ > 0

α > 0 Example 6.35

{(x, s) : ‖x‖2 ≤ s}

( ‖x‖2+s

2‖x‖2 x,
‖x‖2+s

2

)
if ‖x‖2 ≥ |s|

(0, 0) if s < ‖x‖2 < −s,

(x, s) if ‖x‖2 ≤ s.

– Example 6.37

{(x, s) : ‖x‖1 ≤ s}

⎧⎨
⎩ (x, s), ‖x‖1 ≤ s,

(Tλ∗ (x), s + λ∗), ‖x‖1 > s,

‖Tλ∗(x)‖1 − λ∗ − s = 0, λ∗ > 0

– Example 6.38
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448 Appendix B. Tables

Orthogonal Projections onto Symmetric Spectral Sets in S
n

set (T ) PT (X) Assumptions

S
n
+ Udiag([λ(X)]+)UT −

{X : I � X � uI} Udiag(v)UT ,  ≤ u

vi = min{max{λi(X), }, u}

B‖·‖F [0, r] r
max{‖X‖F ,r}X r > 0

{X : Tr(X) ≤ b} Udiag(v)UT , v = λ(X)− [eT λ(X)−b]+
n e b ∈ R

Υn Udiag(v)UT , v = [λ(X) − μ∗e]+ where

μ∗ ∈ R satisfies eT [λ(X)− μ∗e]+ = 1

−

B‖·‖S1
[0, α]

⎧⎨
⎩ X, ‖X‖S1 ≤ α,

Udiag(Tβ∗(λ(X)))UT , ‖X‖S1 > α,

‖Tβ∗ (λ(X))‖1 = α, β∗ > 0

α > 0

Orthogonal Projections onto Symmetric Spectral Sets in R
m×n (from Example 7.31)

set (T ) PT (X) Assumptions

B‖·‖S∞ [0, α] Udiag(v)VT , vi = min{σi(X), α} α > 0

B‖·‖F [0, r] r
max{‖X‖F ,r}X r > 0

B‖·‖S1
[0, α]

⎧⎨
⎩ X, ‖X‖S1 ≤ α,

Udiag(Tβ∗(σ(X)))VT , ‖X‖S1 > α,

‖Tβ∗(σ(X))‖1 = α, β∗ > 0

α > 0

Prox Calculus Rules

f(x) proxf (x) Assumptions Reference

∑m
i=1 fi(xi) proxf1

(x1)× · · · × proxfm
(xm) – Theorem 6.6

g(λx + a) 1
λ

[
proxλ2g(λx + a)− a

]
λ = 0, a ∈ E, g

proper
Theorem 6.11

λg(x/λ) λproxg/λ(x/λ) λ = 0, g proper Theorem 6.12

g(x) + c
2‖x‖

2 +
〈a,x〉+ γ

prox 1
c+1

g
( x−a
c+1 ) a ∈ E, c >

0, γ ∈ R, g
proper

Theorem 6.13

g(A(x) + b) x + 1
αA

T (proxαg(A(x) + b)−A(x)− b) b ∈ R
m,

A : V → R
m,

g proper
closed convex,
A ◦ AT = αI,
α > 0

Theorem 6.15

g(‖x‖)
proxg(‖x‖) x

‖x‖ , x = 0

{u : ‖u‖ = proxg(0)}, x = 0
g proper
closed con-
vex, dom(g) ⊆
[0,∞)

Theorem 6.18
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Appendix B. Tables 449

Prox Computations

f(x) dom(f) proxf (x) Assumptions Reference

1
2x

TAx +

bTx+ c

R
n (A + I)−1(x− b) A ∈ S

n
+, b ∈

R
n, c ∈ R

Section 6.2.3

λx3
R+

−1+
√

1+12λ[x]+
6λ λ > 0 Lemma 6.5

μx [0, α] ∩ R min{max{x− μ, 0}, α} μ ∈ R, α ∈
[0,∞]

Example 6.14

λ‖x‖ E

(
1 − λ

max{‖x‖,λ}
)
x ‖·‖—Euclidean

norm, λ > 0
Example 6.19

−λ‖x‖ E

(
1 + λ

‖x‖
)
x, x = 0,

{u : ‖u‖ = λ}, x = 0.
‖·‖—Euclidean
norm, λ > 0

Example 6.21

λ‖x‖1 R
n Tλ(x) = [|x| − λe]+ � sgn(x) λ > 0 Example 6.8

‖ω � x‖1 Box[−α,α] Sω,α(x) α ∈ [0,∞]n,ω ∈
R
n
+

Example 6.23

λ‖x‖∞ R
n x− λPB‖·‖1 [0,1](x/λ) λ > 0 Example 6.48

λ‖x‖a E x− λPB‖·‖a,∗ [0,1](x/λ) ‖x‖a—norm,
λ > 0

Example 6.47

λ‖x‖0 R
n H√

2λ(x1)× · · · × H√
2λ(xn) λ > 0 Example 6.10

λ‖x‖3 E
2

1+
√

1+12λ‖x‖x ‖·‖—Euclidean
norm, λ > 0,

Example 6.20

−λ
n∑

j=1

log xj R
n
++

⎛
⎝ xj+

√
x2
j
+4λ

2

⎞
⎠

n

j=1

λ > 0 Example 6.9

δC(x) E PC(x) ∅ = C ⊆ E Theorem 6.24

λσC(x) E x− λPC(x/λ) λ > 0, C = ∅
closed convex

Theorem 6.46

λmax{xi} R
n x− PΔn (x/λ) λ > 0 Example 6.49

λ
∑k

i=1 x[i] R
n x− λPC(x/λ),

C = He,k ∩ Box[0,e]
λ > 0 Example 6.50

λ
∑k

i=1 |x〈i〉| R
n x− λPC(x/λ),

C = B‖·‖1 [0, k] ∩ Box[−e, e]
λ > 0 Example 6.51

λMμ
f (x) E x +

λ
μ+λ

(
prox(μ+λ)f (x)− x

) λ, μ > 0, f
proper closed
convex

Corollary 6.64

λdC(x) E x +

min
{

λ
dC(x)

, 1
}
(PC(x)− x)

∅ = C closed
convex, λ > 0

Lemma 6.43

λ
2 d

2
C(x) E

λ
λ+1PC(x) + 1

λ+1x ∅ = C closed
convex, λ > 0

Example 6.65

λHμ(x) E

(
1− λ

max{‖x‖,μ+λ}
)
x λ, μ > 0 Example 6.66

ρ‖x‖21 R
n

(
vixi

vi+2ρ

)n

i=1
, v =[√

ρ
μ |x| − 2ρ

]
+
,eTv = 1 (0

when x = 0)

ρ > 0 Lemma 6.70

λ‖Ax‖2 R
n x − AT (AAT + α∗I)−1Ax,

α∗ = 0 if ‖v0‖2 ≤ λ; oth-
erwise, ‖vα∗‖2 = λ; vα ≡
(AAT + αI)−1Ax

A ∈ R
m×n

with full row
rank, λ > 0

Lemma 6.68
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450 Appendix B. Tables

Prox of Symmetric Spectral Functions over S
n (from Example 7.19)

F (X) dom(F ) proxF (X) Reference

α‖X‖2F S
n 1

1+2αX Section 6.2.3

α‖X‖F S
n

(
1− α

max{‖X‖F ,α}
)
X Example 6.19

α‖X‖S1 S
n Udiag(Tα(λ(X)))UT Example 6.8

α‖X‖2,2 S
n Udiag(λ(X)− αPB‖·‖1 [0,1](λ(X)/α))UT Example 6.48

−α log det(X) S
n
++ Udiag

(
λj(X)+

√
λj(X)2+4α

2

)
UT Example 6.9

αλ1(X) S
n Udiag(λ(X)− αPΔn (λ(X)/α))UT Example 6.49

α
∑k

i=1 λi(X) S
n X− αUdiag(PC(λ(X)/α))UT ,

C = He,k ∩ Box[0,e]
Example 6.50

Prox of Symmetric Spectral Functions over R
m×n (from Example 7.30)

F (X) proxF (X)

α‖X‖2F 1
1+2αX

α‖X‖F
(
1− α

max{‖X‖F ,α}
)
X

α‖X‖S1 Udg(Tα(σ(X)))VT

α‖X‖S∞ X− αUdg(PB‖·‖1 [0,1](σ(X)/α))VT

α‖X‖〈k〉 X − αUdg(PC(σ(X)/α))VT ,

C = B‖·‖1 [0, k] ∩ B‖·‖∞ [0, 1]
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Appendix C

Symbols and Notation

Vector Spaces

E,V underlying vector spaces

E∗ p. 9 dual space of E

‖ · ‖∗ p. 9 dual norm

dim(V ) p. 2 dimension of a vector space V

aff(S) p. 3 affine hull of a set S

‖ · ‖ p. 2 norm

‖ · ‖E p. 2 norm of a vector space E

〈x,y〉 p. 2 inner product of x and y

Rn p. 4 space of n-dimensional real column vectors

[x,y] p. 3 closed line segment between x and y

(x,y) p. 3 open line segment between x and y

B(c, r), B‖·‖(c, r) p. 2 open ball with center c and radius r

B[c, r], B‖·‖[c, r] p. 2 closed ball with center c and radius r

Rm×n p. 6 space of m× n real-valued matrices

AT p. 11 adjoint of the linear transformation A

I p. 8 identity transformation

451
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452 Appendix C. Symbols and Notation

The Space Rn

ei p. 4 ith vector in the standard basis of Rn

e p. 4 vector of all ones

0 p. 4 vector of all zeros

‖ · ‖p p. 5 lp-norm

Δn p. 5 unit simplex

Box[�,u] pp. 5, 147 box with lower bounds � and upper bounds u

Rn+ p. 5 nonnegative orthant

Rn++ p. 5 positive orthant

Ha,b p. 3 the hyperplane {x : 〈a,x〉 = b}

H−a,b p. 3 the half-space {x : 〈a,x〉 ≤ b}

[x]+ p. 5 nonnegative part of x

|x| p. 5 absolute values vector of x

sgn(x) p. 5 sign vector of x

a� b p. 5 Hadamard product

x↓ p. 180 x reordered nonincreasingly
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Appendix C. Symbols and Notation 453

The Space Rm×n

Sn p. 6 set of all n× n symmetric matrices

S
n
+ p. 6 set of all n× n positive semidefinite matrices

Sn++ p. 6 set of all n× n positive definite matrices

Sn− p. 6 set of all n× n negative semidefinite matrices

Sn−− p. 6 set of all n× n negative definite matrices

On p. 6 set of all n× n orthogonal matrices

Υn p. 183 spectahedron

‖A‖F p. 6 Frobenius norm of A

‖A‖Sp p. 189 Schatten p-norm of A

‖A‖〈k〉 p. 190 Ky Fan k-norm of A

‖A‖ab p. 7 induced norm of A ∈ Rm×n when Rn and Rm the
norms ‖ · ‖a and ‖ · ‖b respectively

‖A‖2 p. 7 spectral norm of A

λmax(A) maximum eigenvalue of a symmetric matrix A

λmin(A) maximum eigenvalue of a symmetric matrix A

Sets

int(S) interior of S

cl(S) closure of S

conv(S) convex hull of S

A+B p. 26 Minkowski sum of A and B

K◦ p. 27 polar cone of K

NS(x) p. 36 normal cone of S at x

ri(S) p. 43 relative interior of S

#A number of elements in A

Λn p. 180 n× n permutation matrices

ΛGn p. 180 n× n generalized permutation matrices
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454 Appendix C. Symbols and Notation

Functions and Operators

log x natural logarithm of x

dom(f) p. 14 (effective) domain of f

δC p. 14 indicator function of the set C

epi(f) p. 14 epigraph of f

Lev(f, α) p. 15 α-level set of f

dC p. 22 distance function to C

σC p. 26 support function of C

h1�h2 p. 24 infimal convolution of h1 and h2

∂f(x) p. 35 subdifferential set of f at x

f ′(x) p. 202 subgradient of f at x

dom(∂f) p. 40 set of points of differentiability

f ′(x;d) p. 44 directional derivative of f at x in the direction d

∇f(x) p. 48 gradient of f at x

∇2f(x) Hessian of a function over Rn at x

PC p. 49 orthogonal projection on C

f ◦ g f composed with g

f∗ p. 87 conjugate of f

C1,1
L (D) p. 107 class of L-smooth functions over D

proxf (x) p. 129 proximal mapping of f evaluated at x

Tλ(x) p. 136 soft thresholding with level λ evaluated at x

Sa,b p. 151 two-sided soft thresholding

Hμ p. 163 Huber function with smoothing parameter μ

T f,gL (x), TL(x) p. 271 prox-grad mapping evaluated at x

Gf,gL (x), GL(x) p. 273 gradient mapping evaluated at x
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Appendix C. Symbols and Notation 455

Matrices

A† Moore–Penrose pseudoinverse

λmax(A) maximum eigenvalue of A

λmin(A) minimum eigenvalue of A

σmax(A) maximum singular of A

Range(A) range of A—all linear combinations of the columns of A

Null(A) null space/kernel of A

diag(x) diagonal matrix with diagonal x

dg(x) p. 188 generalized diagonal matrix with diagonal x
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Appendix D

Bibliographic Notes

Chapter 1. For a comprehensive treatment of finite-dimensional vector spaces and
advanced linear algebra topics, the reader can refer to the classical book of Halmos
[64], as well as to the textbooks of Meyer [86] and Strang [117].

Chapters 2, 3, 4. Most of the material in these chapters is classical. Additional
materials and extensions can be found, for example, in Bauschke and Combettes
[8], Bertsekas [29], Borwein and Lewis [32], Hiriart-Urruty and Lemaréchal [67],
Nesterov [94] and Rockafellar [108]. Example 2.17 is taken from the book of Hiriart-
Urruty and Lemaréchal [67, Example 2.1.4]. Example 2.32 is from Rockafellar [108,
p. 83]. The proof in Example 3.31 follows Beck and Teboulle [20, Theorem 4.1].
Section 3.5, excluding Theorem 3.60, follows Hiriart-Urruty and Lemaréchal [67,
Section VII.3.3]. Theorem 3.60 is a slight extension of Lemma 6 from Lan [78].
The optimality conditions derived in Example 3.66 are rather old and can be traced
back to Sturm, who proved them in his work from 1884 [118]. Actually, (re)proving
these conditions was the main motivation for Weiszfeld to devise the (now-called)
Weiszfeld’s method in 1937 [124]. For more information on the Fermat–Weber
problem and Weiszfeld’s method, see the review paper of Beck and Sabach [14] and
references therein.

Chapter 5. The proof of the descent lemma can be found in Bertsekas [28]. The
proof of Theorem 5.8 follows the proof of Nesterov in [94, Theorem 2.1.5]. The
equivalence between claims (i) and (iv) in Theorem 5.8 is also known as the Baillon-
Haddad theorem [5]. The analysis in Example 5.11 of the smoothness parameter of
the squared lp-norm follows the derivation in the work of Ben-Tal, Margalit, and
Nemirovski [24, Appendix 1]. The conjugate correspondence theorem can be de-
duced from the work of Zalinescu [128, Theorem 2.2] and can also be found in the
paper of Azé and Penot [3] as well as Zalinescu’s book [129, Corollary 3.5.11]. In its
Euclidean form, the result can be found in the book of Rockafellar and Wets [111,
Proposition 12.60]. Further characterizations appear in the paper of Bauschke and
Combettes [7]. The proof of Theorem 5.30 follows Beck and Teboulle [20, Theorem
4.1].
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Chapter 6. The seminal 1965 paper of Moreau [87] already contains much of the
properties of the proximal mapping discussed in the chapter. Excellent references
for the subject are the book of Bauschke and Combettes [8], the paper of Combettes
and Wajs [44], and the review paper of Parikh and Boyd [102]. The computation of
the prox of the squared l1-norm in Section 6.8.2 is due to Evgeniou, Pontil, Spinellis,
and Nassuphis [54].

Chapter 7. The notion of symmetry w.r.t. a given set of orthogonal matrices was
studied by Rockafellar [108, Chapter 12]. A variant of the symmetric conjugate
theorem (Theorem 7.9) can be found in Rockafellar [108, Corollary 12.3.1]. Fan’s
inequality can be found in Theobald [119]. Von Neumann’s trace inequality [123],
as well as Fan’s inequality, are often formulated over the complex field, but the
adaptation to the real field is straightforward. Sections 7.2 and 7.3, excluding the
spectral proximal theorem, are based on the seminal papers of Lewis [80, 81] on
unitarily invariant functions. See also Borwein and Lewis [32, Section 1.2], as well
as Borwein and Vanderwerff [33, Section 3.2]. The equivalence between the con-
vexity of spectral functions and their associated functions was first established by
Davis in [47]. The spectral proximal formulas can be found in Parikh and Boyd [102].

Chapter 8. Example 8.3 is taken from Vandenberghe’s lecture notes [122]. Wolfe’s
example with γ = 16

9 originates from his work [125]. The version with general γ > 1,
along with the support form of the function, can be found in the set of exercises
[35]. Studies of subgradient methods and extensions can be found in many books;
to name a few, the books of Nemirovsky and Yudin [92], Shor [116] and Polyak [104]
are classical; modern accounts of the subject can be found, for example, in Bertsekas
[28, 29, 30], Nesterov [94], and Ruszczyński [113]. The analysis of the stochastic and
deterministic projected subgradient method in the strongly convex case is based on
the work of Lacoste-Julien, Schmidt, and Bach [77]. The fundamental inequality
for the incremental projected subgradient is taken from Nedić and Bertsekas [89],
where many additional results on incremental methods are derived. Theorem 8.42
and Lemma 8.47 are Lemmas 1 and 3 from the work of from Nedić and Ozdaglar
[90]. The latter work also contains additional results on the dual projected sub-
gradient method with constant stepsize. The presentation of the network utility
maximization problem, as well as the distributed subgradient method for solving it,
originates from Nedić and Ozdaglar [91].

Chapter 9. The mirror descent method was introduced by Nemirovsky and Yudin
in [92]. The interpretation of the method as a non-Euclidean projected subgradient
method was presented by Beck and Teboulle in [15]. The rate of convergence anal-
ysis of the mirror descent method is based on [15]. The three-points lemma was
proven by Chen and Teboulle in [43]. The analysis of the mirror-C method is based
on the work of Duchi, Shalev-Shwartz, Singer, and Tewari [49], where the algorithm
is introduced in an online and stochastic setting.

Chapter 10. The proximal gradient method can be traced back to the forward-
backward algorithm introduced by Bruck [36], Pasty [103], and Lions and Mercier
[83]. More modern accounts of the topic can be found, for example, in Bauschke
and Combettes [8, Chapter 27], Combettes and Wajs [44], and Facchinei and Pang
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[55, Chapter 12]. The proximal gradient method is a generalization of the gradient
method, which goes back to Cauchy [38] and was extensively studied and general-
ized by many authors; see, for example, the books of Bertsekas [28], Nesterov [94],
Polyak [104], and Nocedal and Wright [99], as well as the many references therein.
ISTA and its variations was studied in the literature in several contexts; see, for
example, the works of Daubechies, Defrise, and De Mol [46]; Hale, Yin, and Zhang
[63]; Wright, Nowak, and Figueiredo [127]; and Elad [52]. The analysis of the prox-
imal gradient method in Sections 10.3 and 10.4 mostly follows the presentation of
Beck and Teboulle in [18] and [19]. Lemma 10.11 was stated and proved for the
case where g is an indicator of a nonempty closed and convex set in [9]; see also
[13, Lemma 2.3]. Theorem 10.9 on the monotonicity of the gradient mapping is a
simple generalization of [10, Lemma 9.12]. The first part of the monotonicity result
was shown in the case where g is an indicator of a nonempty closed and convex
set in Bertsekas [28, Lemma 2.3.1]. Lemma 10.12 is a minor variation of Lemma
2.4 from Necoara and Patrascu [88]. Theorem 10.26 is an extension of a result of
Nesterov from [97] on the convergence of the gradient method for convex functions.
The proximal point method was studied by Rockafellar in [110], as well as by many
other authors; see, for example, the book of Bauschke and Combettes [8] and its
extensive list of references. FISTA was developed by Beck and Teboulle in [18];
see also the book chapter [19]; the convergence analysis presented in Section 10.7
is taken from these sources. When the nonsmooth part is an indicator function
of a closed and convex set, the method reduces to the optimal gradient method
of Nesterov from 1983 [93]. Other accelerated proximal gradient methods can be
found in the works of Nesterov [98] and Tseng [121]—the latter also describes a
generalization to the non-Euclidean setting, which is an extension of the work of
Auslender and Teboulle [2]. MFISTA and its convergence analysis are from the
work of Beck and Teboulle [17]. The idea of using restarting in order to gain an
improved rate of convergence in the strongly convex case can be found in Nesterov’s
work [98] in the context of a different accelerated proximal gradient method, but
the idea works for any method that gains an O(1/k2) rate in the (not necessarily
strongly) convex case. The proof of Theorem 10.42 follows the proof of Theorem
4.10 from the review paper of Chambolle and Pock [42]. The idea of solving non-
smooth problems through a smooth approximation was studied by many authors;
see, for example, the works of Ben-Tal and Teboulle [25], Bertsekas [26], Moreau
[87], and the more recent book of Auslender and Teboulle [1] and references therein.
Lemma 10.70 can be found in Levitin and Polyak [79]. The idea of producing an
O(1/ε) complexity result for nonsmooth problems by employing an accelerated gra-
dient method was first presented and developed by Nesterov in [95]. The extension
to the three-part composite model and to the setting of more general smooth ap-
proximations was studied by Beck and Teboulle [20], where additional results and
extensions can also be found. The non-Euclidean gradient method was proposed
by Nutini, Schmidt, Laradji, Friendlander, and Koepke [100], where its rate of con-
vergence in the strongly convex case was analyzed; the work [100] also contains a
comparison between two coordinate selection strategies: Gauss–Southwell (which is
the one considered in the chapter) and randomized selection. The non-Euclidean
proximal gradient method was presented in the work of Tseng [121], where an ac-
celerated non-Euclidean version was also analyzed.
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Chapter 11. The version of the block proximal gradient method in which the
nonsmooth functions gi are indicators was studied by Luo and Tseng in [84], where
some error bounds on the model were assumed. It was shown that under the model
assumptions, the CBPG method with each block consisting of a single variable has
a linear rate of convergence. Nesterov studied in [96] a randomized version of the
method (again, in the setting where the nonsmooth functions are indicators) in
which the selection of the block on which a gradient projection step is performed at
each iteration is done randomly via a pre-described distribution. For the first time,
Nesterov was able to establish global nonasymptotic rates of convergence in the con-
vex case without any strict convexity, strong convexity, uniqueness, or error bound
assumptions. Specifically, it was shown that the rate of convergence to the optimal
value of the expectation sequence of the function values of the sequence generated
by the randomized method is sublinear under the assumption of Lipschitz continu-
ity of the gradient and linear under a strong convexity assumption. In addition, an
accelerated O(1/k2) was devised in the unconstrained setting. Probabilistic results
on the convergence of the function values were also provided. In [107] Richtarik and
Takac generalized Nesterovs results to the composite model. The derivation of the
randomized complexity result in Section 11.5 mostly follows the presentation in the
work of Lin, Lu, and Xiao [82]. The type of analysis in the deterministic convex
case (Section 11.4.2) originates from Beck and Tetruashvili [22], who studied the
case in which the nonsmooth functions are indicators. The extension to the general
composite model can be found in Shefi and Teboulle [115] as well as in Hong, Wang,
Razaviyayn, and Luo [69]. Lemma 11.17 is Lemma 3.8 from [11]. Theorem 11.20
is a specialization of Lemma 2 from Nesterov [96]. Additional related methods and
discussions can be found in the extensive survey of Wright [126].

Chapter 12. The idea of using a proximal gradient method on the dual of the
main model (12.1) was originally developed by Tseng in [120], where the algorithm
was named “alternating minimization.” The primal representations of the DPG and
FDPG methods, convergence analysis, as well as the primal-dual relation are from
Beck and Teboulle [21]. The DPG method for solving the total variation problem
was initially devised by Chambolle in [39], and the accelerated version was con-
sidered by Beck and Teboulle [17]. The one-dimensional total variation denoising
problem is presented as an illustration for the DPG and FDPG methods; however,
more direct and efficient methods exist for tackling the problem; see Hochbaum
[68], Condat [45], Johnson [73], and Barbero and Sra [6]. The dual block proxi-
mal gradient method was discussed in Beck, Tetruashvili, Vaisbourd, and Shemtov
[23], from which the specific decomposition of the isotropic two-dimensional total
variation function is taken. The accelerated method ADBPG is a different repre-
sentation of the accelerated method proposed by Chambolle and Pock in [41]. The
latter work also discusses dual block proximal gradient methods and contains many
other suggestions for decompositions of total variation functions.

Chapter 13. The conditional gradient algorithm was presented by Frank andWolfe
[56] in 1956 for minimizing a convex quadratic function over a compact polyhedral
set. The original paper of Frank and Wolfe also contained a proof of an O(1/k) rate
of convergence in function values. Levitin and Polyak [79] showed that this O(1/k)
rate can also be extended to the case where the feasible set is a general compact con-
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vex set and the objective function is L-smooth and convex. Dunn and Harshbarger
[50] were probably the first to suggest a diminishing stepsize rule for the conditional
gradient method and to establish a sublinear rate under such a strategy. The gen-
eralized conditional gradient method was introduced and analyzed by Bach in [4],
where it was shown that under a certain setting, it can be viewed as a dual mirror
descent method. Lemma 13.7 (fundamental inequality for generalized conditional
gradient) can be found in the setting of the conditional gradient method in Levitin
and Polyak [79]. The interpretation of the power method as the conditional gradient
method was described in the work of Luss and Teboulle [85], where many other con-
nections between the conditional gradient method and the sparse PCA problem are
explored. Lemma 13.13 is an extension of Lemma 4.4 from Bach’s work [4], and the
proof is almost identical. Similar results on sequences of nonnegative numbers can
be found in the book of Polyak [104, p. 45]. Section 13.3.1 originates from the work
of Canon and Cullum [37]. Polyak in [104, p. 214, Exercise 10] seems to be the first
to mention the linear rate of convergence of the conditional gradient method under
a strong convexity assumption on the feasible set. Theorem 13.23 is from Journée,
Nesterov, Richtárik, and Sepulchre [74, Theorem 12]. Lemma 13.26 and Theorem
13.27 are from Levitin and Polyak [79], and the exact form of the proof is due to
Edouard Pauwels. Another situation, which was not discussed in the chapter, in
which linear rate of converge can be established, is when the objective function is
strongly convex and the optimal solution resides in the interior of the feasible set
(Guélat and Marcotte [62]). Epelman and Freund [53], as well as Beck and Teboulle
[16], showed a linear rate of convergence of the conditional gradient method with a
special stepsize choice in the context of finding a point in the intersection of an affine
space and a closed and convex set under a Slater-type assumption. The randomized
generalized block conditional gradient method presented in Section 13.4 is a simple
generalization of the randomized block conditional gradient method introduced and
analyzed by Lacoste-Julien, Jaggi, Schmidt, and Pletscher in [76]. A deterministic
version was analyzed by Beck, Pauwels, and Sabach in [12]. An excellent overview
of the conditional gradient method, including many more theoretical results and
applications, can be found in the thesis of Jaggi [72].

Chapter 14. The alternating minimization method is a rather old and fundamen-
tal algorithm. It appears in the literature under various names such as the block-
nonlinear Gauss-Seidel method or the block coordinate descent method. Powell’s
example appears in [106]. Theorem 14.3 and its proof originate from Bertsekas [28,
Proposition 2.7.1]. Theorem 14.9 and its proof are an extension of Proposition 6
from Grippo and Sciandrone [61] to the composite model. The proof of Theorem
14.11 follows the proof of Theorem 3.1 from the work of Hong, Wang, Razaviyayn,
and Luo [69], where more general schemes than alternating minimization are also
considered. Section 14.5.2 follows [11].

Chapter 15 The augmented Lagrangian method can be traced back to Hestenes
[66] and Powell [105]. The method and its many variants was studied extensively
in the literature, see, for example, the books of Bertsekas [27] and Bertsekas and
Tsitsiklis [31] and references therein. Rockafellar [109] was first to establish the
duality between the proximal point and the augmented Lagrangian methods; see
also additional discussions in the work of Iusem [71]. ADMM is equivalent to an
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operator splitting method called Douglas–Rachford splitting, which was introduced
in the 1950s for the numerical solution of partial differential equations [48]. ADMM,
as presented in the chapter, was first introduced by Gabay and Mercier [57] and
Glowinski and Marrocco [59]. An extremely extensive survey on ADMM method
can be found in the work of Boyd, Parikh, Chu, Peleato, and Eckstein [34]. AD-
PMM was suggested by Eckstein [51]. The proof of Theorem 15.4 on the rate of
convergence of AD-PMM is based on a combination of the proof techniques of He
and Yuan [65] and Gao and Zhang [58]. Shefi and Teboulle provided in [114] a
unified analysis for general classes of algorithm that include AD-PMM as a special
instance. Shefi and Teboulle also showed the relation between AD-LPMM and the
Chambolle–Pock algorithm [40].
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New York, 2011. With a foreword by Hédy Attouch. (Cited on pp. 457, 458,
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[38] A. L. Cauchy, Méthode generales pour la résolution des systèmes d’equations
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ε-optimal and feasible solution, 241
ε-optimal solution, 206

absolutely permutation symmetric
function, 181

absolutely symmetric function, 179
accelerated dual block proximal gradient

method, 373
AD-LPMM, see alternating direction

linearized prox method of
multipliers

AD-PMM, see alternating direction
proximal method of multipliers

ADBPG, see accelerated dual block
proximal gradient

adjoint transformation, 11
ADMM, see alternating direction method

of multipliers
affine hull, 3
affine set, 3
alternating direction linearized prox

method of multipliers, 426
alternating direction method of

multipliers, 425
alternating direction proximal method of

multipliers, 425
alternating minimization, 405
alternating projection method, 211
augmented Lagrangian, 425
augmented Lagrangian method, 423

ball-pen function, 99, 125
basis, 2
biconjugate function, 89
bidual space, 10
block descent lemma, 336
block Lipschitz constant, 333
block proximal gradient method, 338
block sufficient decrease lemma, 337
box, 5

Bregman distance, 248

Cartesian product, 7
CBPG, see cyclic block proximal gradient

method
chain rule, 59
closed ball, 2
closed function, 14
closed line segment, 3
coercive, 20
compact set, 20, 42
complexity, 206
composite model, 78
conditional gradient method, 379
conditional gradient norm, 381
cone, 27
conjugate correspondence theorem, 123
conjugate function, 87
conjugate subgradient theorem, 104
convex feasibility problem, 208
convex function, 21
convex set, 3
coordinate descent, 323
coordinate-wise minimum, 407
cyclic block proximal gradient method,

338
cyclic shuffle, 346

DBPG, see dual block proximal gradient
decomposition method, 331
denoising, 364
descent direction, 195
descent lemma, 109
differentiable function, 48
dimension, 2
directional derivative, 44
distance function, 22
distributed optimization, 245
domain, 14
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474 Index

dot product, 4, 6
DPG, 355
dual block proximal gradient, 370

method, 369
dual norm, 9
dual projected subgradient method, 232
dual proximal gradient, 355
dual space, 9

effective domain, 14
eigenvalues, 182
epigraph, 14
ergodic convergence, 215
Euclidean norm, 3
Euclidean space, 3
even function, 179
exact line search, 196
extended Moreau decomposition, 160
extended real-valued functions, 13

Farkas lemma, 28
fast dual proximal gradient, 358
fast proximal gradient method, 290
FDPG, see fast dual proximal gradient
Fejér monotonicity, 205
Fenchel’s dual, 102
Fenchel’s duality theorem, 102
Fenchel’s inequality, 88
Fermat’s optimality condition, 73
Fermat–Weber problem, 75
finite-dimensional vector space, 2
first projection theorem, 147
first prox theorem, 130
FISTA, 290
Fréchet differentiability, 48
Frank Wolfe method, 379
Fritz-John conditions, 81
Frobenius norm, 6, 189
functional decomposition method, 331

generalized Cauchy–Schwarz, 9
generalized conditional gradient method,

380
generalized diagonal matrix, 188
generalized permutation matrix, 180
geometric median, 75
global Lipschitz constant, 333
gradient, 48
gradient mapping, 272
gradient method, 195
greedy projection algorithm, 210

Hadamard product, 5

half-space, 3
hard thresholding, 137
hinge loss, 94
Huber function, 163, 167, 169, 309
hyperplane, 3

identity transformation, 8
incremental projected subgradient, 229
indicator function, 14
induced matrix norm, 7
infimal convolution, 24, 102
inner product, 2
inner product space, 3
ISTA, 271
iterative shrinkage-thresholding algorithm,

271

Jensen’s inequality, 21

KKT conditions, 81
Kullback–Leibler divergence, 252
Ky Fan norms, 190

l0-norm, 19
lp-norm, 5
l∞-norm, 5
l1-regularized least squares, 295, 434
L-smooth function, 107
Lagrangian dual, 38
level set, 15, 149
line segment principle, 119
linear approximation theorem, 112
linear functional, 9
linear programming, 212
linear rate, 288
linear transformation, 8
linearly independent, 2
log-sum-exp function, 98
Lorentz cone, 154
lower semicontinuous function, 15

max formula, 47
median, 73
Minkowski sum, 26
mirror descent, 247
mirror-C method, 262
Moore–Penrose pseudoinverse, 96
Moreau decomposition, 160
Moreau envelope, 163

negative entropy, 96, 124
negative sum of logs, 136, 152
network utility maximization, 243
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non-Euclidean gradient method, 317
non-Euclidean proximal gradient, 327
non-Euclidean second prox theorem, 253
nonnegative orthant, 5
nonnegative part, 5
norm, 2
norm-dependent function, 180
normal cone, 36
nuclear norm, 189

open ball, 2
open line segment, 3
orthogonal matrix, 6
orthogonal projection, 49, 146

partial conditional gradient norm, 402
partial gradient mapping, 333
partial prox grad mapping, 333
permutation matrix, 180
permutation symmetric function, 180
polar cone, 27
Polyak’s stepsize, 204
positive orthant, 5
power method, 386
primal counterpart, 316
projected subgradient method, 201
projected subgradient method, 202
proper function, 14
prox-grad operator, 271
proximable, 432
proximal gradient method, 269, 271
proximal mapping, 129
proximal point method, 288
proximal subgradient method, 262

Q-inner product, 4
Q-norm, 4

randomized block conditional gradient
method, 402

randomized block proximal gradient
method, 348

RBCG, see randomized block conditional
gradient method

RBPG, see randomized block proximal
gradient method

real vector space, 1
relative interior, 43
restarted FISTA, 299
restarting, 299
robust regression, 436

S-FISTA, 310
s-sparse vector, 174
scalar, 1

scalar multiplication, 1
Schatten norm, 189
second projection theorem, 157
second prox theorem, 157
singleton, 51
singular value decomposition, 188
Slater’s condition, 82
smoothness parameter, 107
soft thresholding, 136, 142
span, 2
spectahdron, 183
spectral conjugate formula, 184, 190
spectral decomposition, 182
spectral function, 182, 189
spectral norm, 7, 189
standard basis, 4
stationarity, 80
steepest descent, 195
stochastic projected subgradient method,

221
strict separation theorem, 31
strong convexity, 117
strong duality theorem, 439
strong subdifferential result, 39
strongly convex set, 396
subdifferentiable, 39
subdifferential, 35
subgradient, 35
subgradient inequality, 35
sublinear rate, 284
sufficient decrease lemma, 272
support function, 26, 161
supporting hyperplane theorem, 41
symmetric conjugate theorem, 181
symmetric function, 179
symmetric spectral function, 183, 189
symmetric spectral set, 187, 194

three-points lemma, 252
total variation, 364
trace norm, 189
triangle inequality, 2
two-sided soft thresholding, 151

unbiased estimator, 222
unit simplex, 5

value function, 67
variables decomposition method, 332
vector space, 1
von Neumann’s trace inequality, 190

weak subdifferential result, 39
Wolfe’s example, 197
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